
Simulink
 Model-Based and System-Based Design

®

Simulink Reference
Version 5

slref.book Page 1 M onday, September 27, 2004 3:20 PM

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Simulink Reference
© COPYRIGHT 2003-2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 2002 Online only New for Simulink 5 (Release 13)
September 2003 Online only Revised for Simulink 5.1 (Release 13SP1)
October 2004 Online only Revised for Simulink 5.2 (Release 13SP2)

slref.book Page 2 M onday, September 27, 2004 3:20 PM

Contents

slref.book Page i M onday, September 27, 2004 3:20 PM
1
Block Libraries

Continuous . 1-2

Discontinuities . 1-3

Discrete . 1-4

Look-Up Tables . 1-5

Math Operations . 1-6

Model Verification . 1-8

Model-Wide Utilities . 1-10

Ports & Subsystems . 1-11

Signal Attributes . 1-13

Signal Routing . 1-14

Sinks . 1-15

Sources . 1-16

User-Defined Functions . 1-18

Blocksets and Toolboxes . 1-19

Demos Library . 1-20
i

ii Contents

slref.book Page ii M onday, Septem ber 27, 2004 3:20 PM
2
Simulink Blocks

Abs . 2-3
Action Port . 2-5
Algebraic Constraint . 2-8
Assertion . 2-10
Assignment . 2-12
Backlash . 2-17
Band-Limited White Noise . 2-21
Bitwise Logical Operator . 2-24
Bus Creator . 2-28
Bus Selector . 2-32
Check Discrete Gradient . 2-35
Check Dynamic Gap . 2-38
Check Dynamic Lower Bound . 2-41
Check Dynamic Range . 2-44
Check Dynamic Upper Bound . 2-47
Check Input Resolution . 2-50
Check Static Gap . 2-53
Check Static Lower Bound . 2-56
Check Static Range . 2-59
Check Static Upper Bound . 2-62
Chirp Signal . 2-65
Clock . 2-67
Combinatorial Logic . 2-69
Complex to Magnitude-Angle . 2-73
Complex to Real-Imag . 2-74
Configurable Subsystem . 2-75
Constant . 2-79
Coulomb and Viscous Friction . 2-83
Data Store Memory . 2-85
Data Store Read . 2-88
Data Store Write . 2-90
Data Type Conversion . 2-93
Dead Zone . 2-95
Demux . 2-97
Derivative . 2-103
Digital Clock . 2-105
Direct Look-Up Table (n-D) . 2-106
Discrete Filter . 2-112

slref.book Page iii M onday, September 27, 2004 3:20 PM
Discrete State-Space . 2-114
Discrete-Time Integrator . 2-116
Discrete Transfer Fcn . 2-124
Discrete Zero-Pole . 2-126
Display . 2-128
DocBlock . 2-131
Dot Product . 2-132
Enable . 2-134
Enabled and Triggered Subsystem . 2-136
Enabled Subsystem . 2-137
Fcn . 2-138
First-Order Hold . 2-141
For Iterator . 2-143
For Iterator Subsystem . 2-147
From . 2-148
From File . 2-150
From Workspace . 2-153
Function-Call Generator . 2-157
Function-Call Subsystem . 2-159
Gain, Matrix Gain . 2-160
Goto . 2-166
Goto Tag Visibility . 2-169
Ground . 2-170
Hit Crossing . 2-171
IC . 2-173
If . 2-175
If Action Subsystem . 2-180
Inport . 2-181
Integrator . 2-186
Interpolation (n-D) Using PreLook-Up 2-197
Logical Operator . 2-200
Look-Up Table . 2-204
Look-Up Table (2-D) . 2-211
Look-Up Table (n-D) . 2-217
Magnitude-Angle to Complex . 2-223
Manual Switch . 2-225
Math Function . 2-226
MATLAB Fcn . 2-228
Matrix Concatenation . 2-230
Memory . 2-232
iii

iv Contents

slref.book Page iv M onday, Septem ber 27, 2004 3:20 PM
Merge . 2-234
MinMax . 2-238
Model Info . 2-240
Multi-Port Switch . 2-243
Mux . 2-247
Outport . 2-250
Polynomial . 2-254
Prelook-Up Index Search . 2-256
Product . 2-259
Probe . 2-264
Pulse Generator . 2-266
Quantizer . 2-271
Ramp . 2-273
Random Number . 2-275
Rate Limiter . 2-277
Rate Transition . 2-279
Real-Imag to Complex . 2-282
Relational Operator . 2-284
Relay . 2-288
Repeating Sequence . 2-292
Reshape . 2-294
Rounding Function . 2-297
Saturation . 2-299
Scope, Floating Scope . 2-301
Selector . 2-315
S-Function . 2-319
S-Function Builder . 2-321
Sign . 2-322
Signal Builder . 2-323
Signal Generator . 2-324
Signal Specification . 2-327
Sine Wave . 2-330
Slider Gain . 2-335
State-Space . 2-337
Step . 2-340
Stop Simulation . 2-342
Subsystem, Atomic Subsystem . 2-343
Sum . 2-347
Switch . 2-351
Switch Case . 2-354

slref.book Page v M onday, September 27, 2004 3:20 PM
Switch Case Action Subsystem . 2-358
Terminator . 2-359
Time-Based Linearization . 2-360
To File . 2-362
To Workspace . 2-364
Transfer Fcn . 2-368
Transport Delay . 2-371
Trigger . 2-374
Trigger-Based Linearization . 2-377
Triggered Subsystem . 2-379
Trigonometric Function . 2-380
Uniform Random Number . 2-382
Unit Delay . 2-384
Variable Transport Delay . 2-386
While Iterator . 2-389
While Iterator Subsystem . 2-393
Width . 2-394
XY Graph . 2-395
Zero-Order Hold . 2-397
Zero-Pole . 2-399

3
Linearization and Trimming Commands

linmod, dlinmod, linmod2 . 3-2
trim . 3-6

4
Model Construction Commands

add_block . 4-6
add_line . 4-7
add_param . 4-9
addterms . 4-10
bdclose . 4-11
bdroot . 4-12
close_system . 4-13
v

vi Contents

slref.book Page vi M onday, Septem ber 27, 2004 3:20 PM
compare_model . 4-15
delete_block . 4-16
delete_line . 4-17
delete_param . 4-18
find_system . 4-19
gcb . 4-24
gcbh . 4-25
gcs . 4-26
get_param . 4-27
new_system . 4-29
open_system . 4-30
replace_block . 4-31
save_system . 4-33
set_param . 4-34
simulink . 4-36
sldiscmdl . 4-37
slmdldiscui . 4-41
slupdate . 4-42

5
Simulation Commands

model . 5-5
sim . 5-7
simplot . 5-10
simset . 5-12
simget . 5-16

6
Mask Icon Drawing Commands

disp . 6-5
dpoly . 6-6
fprintf . 6-8
image . 6-9
patch . 6-10
plot . 6-11

slref.book Page vii M onday, Septem ber 27, 2004 3:20 PM
port_label . 6-12
text . 6-13

7
Simulink Debugger Commands

animate . 7-4
ashow . 7-5
atrace . 7-6
bafter . 7-7
break . 7-9
bshow . 7-11
clear . 7-12
continue . 7-13
disp . 7-14
elist . 7-15
emode . 7-18
etrace . 7-19
help . 7-20
minor . 7-21
nanbreak . 7-22
next . 7-23
probe . 7-24
quit . 7-25
run . 7-26
slist . 7-27
states . 7-29
status . 7-30
step . 7-31
stop . 7-32
strace . 7-33
systems . 7-34
tbreak . 7-35
trace . 7-36
undisp . 7-37
untrace . 7-38
where . 7-39
xbreak . 7-41
vii

viii Contents

slref.book Page viii M onday, September 27, 2004 3:20 PM
zcbreak . 7-42
zclist . 7-43

8
Model and Block Parameters

Model Parameters . 8-2

Common Block Parameters . 8-7

Block-Specific Parameters . 8-10

Mask Parameters . 8-26

9
Model File Format

Model File Contents . 9-2
Model Section . 9-3
BlockDefaults Section . 9-3
AnnotationDefaults Section . 9-3
System Section . 9-3

slref.book Page 1 M onday, September 27, 2004 3:20 PM
1

Block Libraries

The following sections describe the usage and contents of the Simulink block libraries. You can use
either the Simulink Library Browser on Windows or the MATLAB command simulink on UNIX to
display and browse the libraries.

1 Block Libraries

1-2

slref.book Page 2 M onday, September 27, 2004 3:20 PM
Continuous
The Continuous library contains blocks that model linear functions.

Block Name Purpose

Derivative Output the time derivative of the input.

Integrator Integrate a signal.

State-Space Implement a linear state-space system.

Transfer Fcn Implement a linear transfer function.

Transport Delay Delay the input by a given amount of time.

Variable Transport Delay Delay the input by a variable amount of
time.

Zero-Pole Implement a transfer function specified in
terms of poles and zeros.

Discontinuities

slref.book Page 3 M onday, September 27, 2004 3:20 PM
Discontinuities
The Discontinuities library contains blocks whose outputs are discontinuous
functions of their inputs.

Block Name Purpose

Backlash Model the behavior of a system with play.

Coulomb and Viscous
Friction

Model discontinuity at zero, with linear
gain elsewhere.

Dead Zone Provide a region of zero output.

Hit Crossing Detect crossing point.

Quantizer Discretize input at a specified interval.

Rate Limiter Limit the rate of change of a signal.

Relay Switch output between two constants.

Saturation Limit the range of a signal.
1-3

1 Block Libraries

1-4

slref.book Page 4 M onday, September 27, 2004 3:20 PM
Discrete
The Discrete library contains blocks that represent discrete-time functions.

Block Name Purpose

Discrete Filter Implement IIR and FIR filters.

Discrete State-Space Implement a discrete state-space system.

Discrete Transfer Fcn Implement a discrete transfer function.

Discrete Zero-Pole Implement a discrete transfer function
specified in terms of poles and zeros.

Discrete-Time Integrator Perform discrete-time integration of a
signal.

First-Order Hold Implement a first-order sample-and-hold.

Memory Output the block input from the previous
time step.

Unit Delay Delay a signal one sample period.

Zero-Order Hold Implement zero-order hold of one sample
period.

Look-Up Tables

slref.book Page 5 M onday, September 27, 2004 3:20 PM
Look-Up Tables
The Look-Up Tables library contains blocks that use lookup tables to determine
outputs from inputs.

Block Name Purpose

Direct Look-Up Table (n-D) Index into an N-dimensional table to
retrieve a scalar, vector or 2-D matrix.

Interpolation (n-D) Using
PreLook-Up

Perform high-performance constant or
linear interpolation.

Look-Up Table Perform piecewise linear mapping of the
input.

Look-Up Table (2-D) Perform piecewise linear mapping of two
inputs.

Look-Up Table (n-D) Perform piecewise linear or spline mapping
of two or more inputs.

Prelook-Up Index Search Perform index search and interval fraction
calculation for input on a breakpoint set.
1-5

1 Block Libraries

1-6

slref.book Page 6 M onday, September 27, 2004 3:20 PM
Math Operations
The Math Operations library contains blocks that model general mathematical
functions.

Block Name Purpose

Abs Output the absolute value of the input.

Algebraic Constraint Constrain the input signal to zero.

Assignment Assign values to specified elements of a
signal

Bitwise Logical Operator Logically mask, invert, or shift the bits of
an unsigned integer signal.

Combinatorial Logic Implement a truth table.

Complex to
Magnitude-Angle

Output the phase and magnitude of a
complex input signal.

Complex to Real-Imag Output the real and imaginary parts of a
complex input signal.

Dot Product Generate the dot product.

Gain, Matrix Gain Multiply block input by a specified value.

Logical Operator Perform the specified logical operation on
the input.

Magnitude-Angle to
Complex

Output a complex signal from magnitude
and phase inputs.

Math Function Perform a mathematical function.

Matrix Concatenation Concatenate inputs horizontally or
vertically

MinMax Output the minimum or maximum input
value.

Math Operations

slref.book Page 7 M onday, September 27, 2004 3:20 PM
Polynomial Perform evaluation of polynomial
coefficients on input values.

Product Generate the product or quotient of block
inputs.

Real-Imag to Complex Output a complex signal from real and
imaginary inputs.

Relational Operator Perform the specified relational operation
on the input.

Reshape Change the dimensionality of a signal.

Rounding Function Perform a rounding function.

Sign Indicate the sign of the input.

Slider Gain Vary a scalar gain using a slider.

Sum Generate the sum of inputs.

Trigonometric Function Perform a trigonometric function.

Block Name Purpose
1-7

1 Block Libraries

1-8

slref.book Page 8 M onday, September 27, 2004 3:20 PM
Model Verification
Acknowledgment. The Model Verification blocks were developed in conjunction
with the Control System Design team of the Advanced Chassis
SystemDevelopment group of DaimlerChrysler AG, Stuttgart, Germany.

The Model Verification library contains blocks that enable you to create
self-validating models.

Block Name Purpose

Assertion Assert that the input signal is nonzero.

Check Discrete Gradient Check that the absolute value of the
difference between successive samples of a
discrete signal is less than an upper bound.

Check Dynamic Gap Check that a gap of varying width occurs in
the range of a signal’s amplitudes.

Check Dynamic Lower
Bound

Check that a signal is always greater than
a value that can vary at each time step.

Check Dynamic Range Check that a signal alway lies in a varying
range of amplitudes.

Check Dynamic Upper
Bound

Check that a signal is always less than a
value that can vary at each time step.

Check Input Resolution Check that a signal has a specified
resolution.

Check Static Gap Check that a fixed-width gap occurs in the
range of a signal’s amplitudes

Check Static Lower Bound Check that a signal is greater than (or
optionally equal to) a lower bound that does
not vary with time.

Check Static Range Check that the input signal falls in a fixed
range of amplitudes.

Model Verification

slref.book Page 9 M onday, September 27, 2004 3:20 PM
Check Static Upper Bound Check that a signal is less than (or
optionally equal to) an upper bound that
does not vary with time.

Block Name Purpose
1-9

1 Block Libraries

1-1

slref.book Page 10 M onday, Septem ber 27, 2004 3:20 PM
Model-Wide Utilities
The Model-Wide Utilities library contains various utility blocks.

Block Name Purpose

DocBlock Create text that documents the model and
save the text with the model.

Model Info Display revision control information in a
model.

Time-Based Linearization Generate linear models in the base
workspace at specific times.

Trigger-Based
Linearization

Generate linear models in the base
workspace when triggered.
0

Ports & Subsystems

slref.book Page 11 M onday, Septem ber 27, 2004 3:20 PM
Ports & Subsystems
The Ports & Subsystems library contains blocks for creating various types of
subsystems.

Block Name Purpose

Action Port Repository for conditionally executed logic
for If and Switch-Case blocks. Note: this
block resides inside the If Action Subsystem
and Switch-Case Action Subsystem blocks
in the Subsystems library.

Configurable Subsystem Represent any block selected from a
specified library.

Enable Add an enabling port to a subsystem. Note
that this block resides inside the Enabled
Subsystem and the Enabled and Triggered
Subsystem in the Subsystems library.

Enabled and Triggered
Subsystem

Skeleton enabled and triggered subsystem.

Enabled Subsystem Skeleton enabled subsystem.

For Iterator Implements C-like for statement logic.

For Iterator Subsystem Implements a C-like for loop.

Function-Call Subsystem Skeleton function call subsystem.

If Implements C-like if-else statement logic.

Inport Create an input port for a subsystem or an
external input. Note that this block resides
inside the Subsystem block and inside other
subsystem blocks in the Subsystems
library.
1-11

1 Block Libraries

1-1

slref.book Page 12 M onday, Septem ber 27, 2004 3:20 PM
Outport Create an output port for a subsystem or an
external output. Note that this block
resides inside the Subsystem block and
inside other subsystem blocks in the
Subsystems library.

Subsystem, Atomic
Subsystem

Represent a system within another system.

Switch Case Implements C-like switch statement logic.

Switch Case Action
Subsystem

Represent a subsystem whose execution is
triggered by a Switch Case block.

Trigger Add a trigger port to a subsystem. Note this
block resides inside the Triggered
Subsystem and the Enabled and Triggered
Subsystem in the Subsystems library.

Triggered Subsystem Skeleton triggered subsystem.

While Iterator Implement a C-like while or do-while
control flow statement as a While
subsystem.

While Iterator Subsystem Represent a subsystem that executes
repeatedly while a condition is satisfied
during a simulation time step.

Block Name Purpose
2

Signal Attributes

slref.book Page 13 M onday, Septem ber 27, 2004 3:20 PM
Signal Attributes
The Signal Attributes library contains blocks that modify or output attributes
of signals.

Block Name Purpose

Data Type Conversion Convert a signal to another data type.

IC Set the initial value of a signal.

Rate Transition Specify the data transfer mechanism
between the data rates of a multirate
system.

Probe Output a signal’s attributes, including
width, sample time, and/or signal type.

Signal Specification Specify attributes of a signal.

Width Output the width of the input vector.
1-13

1 Block Libraries

1-1

slref.book Page 14 M onday, Septem ber 27, 2004 3:20 PM
Signal Routing
The Signal Routing library contains blocks that route signals from one point in
a block diagram to another.

Block Name Purpose

Bus Creator Create a signal bus.

Bus Selector Output signals selected from an input bus.

Data Store Memory Define a shared data store.

Data Store Read Read data from a shared data store.

Data Store Write Write data to a shared data store.

Demux Separate a vector signal into output
signals.

From Accept input from a Goto block.

Goto Pass block input to From blocks.

Goto Tag Visibility Define the scope of a Goto block tag.

Manual Switch Switch between two inputs.

Merge Combine several input lines into a scalar
line.

Multi-Port Switch Choose between block inputs.

Mux Combine several input lines into a vector
line.

Selector Select or reorder the elements of the input
vector.

Switch Switch between two inputs.
4

Sinks

slref.book Page 15 M onday, Septem ber 27, 2004 3:20 PM
Sinks
The Sinks library contains blocks that display or write block output.

Block Name Purpose

Display Show the value of the input.

Outport Create an output port for a subsystem or an
external output.

Scope, Floating Scope Display signals generated during a
simulation.

Stop Simulation Stop the simulation when the input is
nonzero.

Terminator Terminate an unconnected output port.

To File Write data to a file.

To Workspace Write data to a variable in the workspace.

XY Graph Display an X-Y plot of signals using a
MATLAB figure window.
1-15

1 Block Libraries

1-1

slref.book Page 16 M onday, Septem ber 27, 2004 3:20 PM
Sources
The Sources library contains blocks that generate signals.

Block Name Purpose

Band-Limited White Noise Introduce white noise into a continuous
system.

Chirp Signal Generate a sine wave with increasing
frequency.

Clock Display and provide the simulation time.

Constant Generate a constant value.

Digital Clock Generate simulation time at the specified
sampling interval.

From File Read data from a file.

From Workspace Read data from a variable defined in the
workspace.

Ground Ground an unconnected input port.

Inport Create an input port for a subsystem or an
external input.

Pulse Generator Generate pulses at regular intervals.

Ramp Generate a constantly increasing or
decreasing signal.

Random Number Generate normally distributed random
numbers.

Repeating Sequence Generate a repeatable arbitrary signal.

Signal Builder Generate an arbitrary piecewise linear
signal.

Signal Generator Generate various waveforms.
6

Sources

slref.book Page 17 M onday, Septem ber 27, 2004 3:20 PM
Sine Wave Generate a sine wave.

Step Generate a step function.

Uniform Random Number Generate uniformly distributed random
numbers.

Block Name Purpose
1-17

1 Block Libraries

1-1

slref.book Page 18 M onday, Septem ber 27, 2004 3:20 PM
User-Defined Functions
The User-Defined Functions library contains blocks that allow you to define the
function that relates inputs to outputs.

Block Name Purpose

Fcn Apply a specified expression to the input.

MATLAB Fcn Apply a MATLAB function or expression to
the input.

S-Function Access an S-function.

S-Function Builder Builds a C MEX S-function from
specifications and code that you supply.
8

Blocksets and Toolboxes

slref.book Page 19 M onday, Septem ber 27, 2004 3:20 PM
Blocksets and Toolboxes
The Blocksets and Toolboxes library contains the Extras block library of
specialized blocks.
1-19

1 Block Libraries

1-2

slref.book Page 20 M onday, Septem ber 27, 2004 3:20 PM
Demos Library
The Demos library contains useful MATLAB and Simulink demos.
0

slref.book Page 1 M onday, September 27, 2004 3:20 PM
2

Simulink Blocks

What Each Block Reference Page Contains
Blocks appear in alphabetical order and contain some or all of this information:

• The block name, icon, and block library that contains the block

• The purpose of the block

• A description of the block’s use

• The data types and numeric type (complex or real) accepted and generated
by the block

• The block dialog box and parameters

• The rules for some or all of these topics, as they apply to blocks with
fixed-point capabilities:

- Converting block parameters from double-precision numbers to
Fixed-Point Blockset data types

- Converting the input data type(s) to the output data type

- Performing block operations between inputs and parameters

• The block characteristics, including some or all of these, as they apply to the
block:

- Direct Feedthrough – Whether the block or any of its ports has direct
feedthrough. For more information, see Algebraic Loops.

- Sample Time – How the block’s sample time is determined, whether by the
block itself (as is the case with discrete and continuous blocks) or inherited
from the block that drives it or is driven by it. For more information, see
Sample Time.

- Scalar Expansion – Whether or not scalar values are expanded to arrays.
Some blocks expand scalar inputs and/or parameters as appropriate. For
more information, see Scalar Expansion of Inputs and Parameters.

- States – the number of discrete and continuous states.

2 Simulink Blocks

2-2

slref.book Page 2 M onday, September 27, 2004 3:20 PM
- Dimensionalized– whether the block accepts and/or generates
multidimensional signal arrays. For more information, see Signal Basics.

- Zero Crossings – whether the block detects zero-crossing events. For more
information, see Zero Crossing Detection.

To view a table that summarizes the data types supported by the blocks in the
Simulink and Fixed-Point block libraries, execute the following command at
the MATLAB command line:

showblockdatatypetable

Abs

slref.book Page 3 M onday, September 27, 2004 3:20 PM
2AbsPurpose Output the absolute value of the input

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Abs block outputs the absolute value of the input.

For signed data types, the absolute value of the most negative value is
problematic since it is not representable by the data type. In this case, the
behavior of the block is controlled by the Saturate on integer overflow check
box. If checked, the absolute value of the data type saturates to the most
positive representable value. If not checked, the absolute value of the most
negative value represented by the data type has no effect.

For example, suppose the block input is an 8-bit signed integer. The range of
this data type is from -128 to 127, and the absolute value of -128 is not
representable. If the Saturate on integer overflow check box is selected, then
the absolute value of -128 is 127. If it is not selected, then the absolute value of
-128 remains at -128.

Data Type
Support

An Abs block accepts real signals of any data type supported by Simulink
except boolean, including fixed-point data types. The Abs block also accepts
complex single and double inputs. The block outputs a real value of the same
data type as the input.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Dialog Box

Saturate on integer overflow
When selected, the block maps signed integer input elements
corresponding to the most negative value of that data type to the most
positive value of that data type:

|u|

Abs
2-3

Abs

slref.book Page 4 M onday, September 27, 2004 3:20 PM
• For 8-bit integers, -128 is mapped to 127.

• For 16-bit integers, -32768 maps to 32767.

• For 32-bit integers, -2147483648 maps to 2147483647.

When not selected, the block does not act on signed integer input elements
corresponding to the most negative value of that data type.

• For 8-bit integers, -128 remains -128.

• For 16-bit integers, -32768 remains -32768.

• For 32-bit integers, -2147483648 remains -2147483648.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Zero Crossing No, unless Enable zero crossing detection is
selected
2-4

Action Port

slref.book Page 5 M onday, September 27, 2004 3:20 PM
2Action PortPurpose Implement the Action subsystems used by if and switch control flow
statements in Simulink

Library Ports & Subsystems

Description Action Port blocks implement Action subsystems used in if and switch control
flow statements. See the references for the If and Switch Case blocks for
examples using Action Port blocks.

Use Action Port blocks to create Action subsystems as follows:

1 Place a subsystem in the system containing the If or Switch Case block.

You can use an ordinary subsystem or an atomic subsystem. In either case,
the resulting Action subsystem is atomic.

2 Add an Action Port to the new subsystem.

This adds an input port named Action to the subsystem, which is now an
Action subsystem.

Action subsystems execute their programming in response to the conditional
outputs of an If or Switch Case block. Use Action subsystems as follows:

1 Create an Action subsystem for each output port configured for an If or
Switch Case block.

2 Connect each output port (if, else, or elseif ports for the If block; case or
default ports for the Switch Case block) to the Action port on an Action
subsystem.

When the connection is made, the icon for the subsystem and the Action Port
block it contains are changed to the name of the output port for the If or
Switch Case block (i.e., if{ }, else{ }, elseif{ }, case{ }, or default{ }).

3 Open the new subsystem and add the diagram that you want to execute in
response to the condition this subsystem covers.

The Action Port block has only the States when execution is resumed
parameter in its parameters dialog. If you set this field to held (the default
value) for an Action Port block, the states of its Action subsystem are retained
between calls even if other member Action subsystems of an if-else or switch
control flow statement are called. If you set the States when execution is
resumed field to reset, the states of a member Action subsystem are reset to
2-5

Action Port

slref.book Page 6 M onday, September 27, 2004 3:20 PM
initial values when it is reenabled. See the “Parameters and Dialog Box”
section following for more details.

Note All blocks in an Action subsystem driven by an If or Switch Case block
must run at the same rate as the driving block.

Data Type
Support

There are no data inputs or outputs for Action Port blocks.

Parameters
and Dialog Box

States when execution is resumed
Specifies how to handle internal states when the subsystem of this Action
Port block is reenabled.

Set this field to held (the default value) to make sure that the Action
subsystem states retain their previous values when the subsystem is
reenabled. Otherwise, set this field to reset if you want the states of the
Action subsystem to be reinitialized when the subsystem is reenabled.

Reenablement of a subsystem occurs when it is called and the condition of
the call is true after having been previously false. In the following example,
the Action Port blocks for both Action subsystems A and B have the States
when execution is resumed parameter set to reset.
2-6

Action Port

slref.book Page 7 M onday, September 27, 2004 3:20 PM
If case[1] is true, Action subsystem A is called. This implies that the default
condition is false. When B is later called for the default condition, its states
are reset. In the same way, Action subsystem A’s states are reset when it is
called right after Action subsystem B is called.

Repeated calls to a case’s Action subsystem do not reset its states. If A is
called again right after a previous call to A, this does not reset A’s states
because its condition, case[1], was not previously false. The same applies to
B.

Characteristics Sample Time Inherited from driving If or Switch Case block.
2-7

Algebraic Constraint

slref.book Page 8 M onday, September 27, 2004 3:20 PM
2Algebraic ConstraintPurpose Constrain the input signal to zero

Library Math Operations

Description The Algebraic Constraint block constrains the input signal f(z) to zero and
outputs an algebraic state z. The block outputs the value necessary to produce
a zero at the input. The output must affect the input through some feedback
path. This enables you to specify algebraic equations for index 1 differential/
algebraic systems (DAEs).

By default, the Initial guess parameter is zero. You can improve the efficiency
of the algebraic loop solver by providing an Initial guess for the algebraic state
z that is close to the solution value.

For example, the following model solves these equations.

z2 + z1 = 1
z2 z1 = 1

The solution is z2 = 1, z1 = 0, as the Display blocks show.

Data Type
Support

An Algebraic Constraint block accepts and outputs real values of type double.
2-8

Algebraic Constraint

slref.book Page 9 M onday, September 27, 2004 3:20 PM
Parameters
and Dialog Box

Initial guess
An initial guess for the solution value. The default is 0.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-9

Assertion

slref.book Page 10 M onday, Septem ber 27, 2004 3:20 PM
2AssertionPurpose Check whether a signal is nonzero

Library Model Verification

Description The Assertion block checks whether any of the elements of the signal at its
input is nonzero. If any element is nonzero, the block does nothing. If any
element is zero, the block halts the simulation, by default, and displays an
error message. The block’s parameter dialog box allows you to

• specify that the block should display an error message when the assertion
fails but allow the simulation to continue.

• specify an M-expression to be evaluated when the assertion fails

• enable or disable the assertion

You can also use the Advanced Pane of the Simulation Parameters dialog
box to enable or disable all Assertion blocks in a model.

The Assertion block and its companion blocks in the Model Verification library
are intended to facilitate creation of self-validating models. For example, you
can use model verification blocks to test that signals do not exceed specified
limits during simulation. When you are satisfied that a model is correct, you
can turn error-checking off by disabling the verification blocks. You do not have
to physically remove them from the model. If you need to modify a model, you
can temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Data Type
Support

The Assertion block accepts input signals of any dimensions and any data type
supported by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-10

Assertion

slref.book Page 11 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Enable Assertion
Unchecking this option disables the Assertion block, that is, causes the
model to behave as if the Assertion block did not exist. The Advanced Pane
of the Simulation Parameters dialog box allows you to enable or disable
all Assertion blocks in a model regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Assertion block to halt the simulation
when the block’s input is zero and display an error message in Simulink’s
Simulation Diagnostics viewer. Otherwise, the block displays a warning
message in the MATLAB command window and continues the simulation.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-11

Assignment

slref.book Page 12 M onday, Septem ber 27, 2004 3:20 PM
2AssignmentPurpose Assign values to specified elements of a signal

Library Math Operations

Description The Assignment block assigns values to specified elements of the signal
connected to its U1 port. You can specify the indices of the elements to be
assigned values either by entering the indices in the block’s dialog box or by
connecting an external indices source or sources to the block. You specify the
values to be assigned to the signal at U1 by connecting a values signal to the
Assignment block’s U2 port. The block replaces the specified elements of U1
with elements from U2, leaving unassigned elements unchanged, and outputs
the result.

You can use the block to assign values to scalar, vector, or matrix signals.

Assigning Values to a Vector Signal
To assign values to a scalar or vector signal, set the block's Input Type
parameter to Vector. The block’s dialog box displays a Source of element
indices parameter. You can specify the indices source as Internal or
External. If you select Internal, the block dialog box displays an Elements
field. Use this field to enter the element indices. If you specify External as the
source of element indices, the block displays an input port named E. Connect
an external index source to this port. The index source can specify any of the
following values as indices:

• -1 (internal source only)

Replaces every element of U1 with the corresponding element of U2.

• Index of a single element specified as a positive integer

Assigns a value to the specified element of U1, leaving the values of all the
other elements unchanged.

• A set of indices specified as a vector

Replaces the specified set of elements of U1 with elements of U2.

The width of the values signal connected to U2 must be the same as the width
of the indices vector. For example, if the indices vector contains two indices, U2
must be a two-element vector of values. The block assigns the first element of
U2 to the element of U1 specified by the first index, the second element of U2
to the U1 element specified by the second index, and so on.
2-12

Assignment

slref.book Page 13 M onday, Septem ber 27, 2004 3:20 PM
Assigning Values to a Matrix Signal
To assign values to a matrix signal, set the Input Type parameter to Matrix.
If you specify the Input Type of the Assignment block as Matrix, the block’s
dialog box displays a Source of row indices parameter and a Source of
column indices parameter. You can specify either or both of these parameters
as Internal or External. If you specify the row and/or column index source as
internal, the block displays a Rows and/or Columns field. Enter the row or
column indices of the elements of U1 to be assigned values into the
corresponding field. If you specify the row and/or column index source as
External, the block displays an input port labeled R and/or an input port
labeled C. Connect an external source of indices to each indices port.

A row or column indices source can have any of the following values:

• -1 (internal source only)

Specifies all rows or columns of U1.

• Single row or index value

Specifies a single row or column of U1.

• Vector of row or column indices

Specifies a set of rows or columns of U1.

The block assigns values from U2 to the specified elements of U1 in
column-major order. In particular, the block assigns the first element of the
first row of U2 to the first specified element in the first specified row in U1. It
assigns the second element of the first row of U2 to the second specified element
of the first specified row of U1, and so on.

To enable all specified elements to be assigned values, U2 must be an N-by-M
matrix where N is the width of the row indices vector and M is the width of the
column indices vector. For example, suppose that you specify a vector of row
indices of size 2 and a vector of column indices of size 4. Then U2 must be a
2-by-4 matrix signal.

When determining the dimensions of U2, count a single row or column index as
a vector of size 1 and -1 as equivalent to a vector of indices of the same width
as the row or dimension size of U1. For example, suppose your row and column
index sources specify a single row index and two column indices. Then U2 must
by a 1-by-2 matrix.
2-13

Assignment

slref.book Page 14 M onday, Septem ber 27, 2004 3:20 PM
Note An Assignment block whose Input type is Matrix accepts only matrix
signals at its U1 and U2 ports. Simulink displays an error dialog box if you
update or simulate a model that connects a vector signal to either the U1 or
U2 port of an Assignment block whose Input type is Matrix.

Iterated Assignment
You can use the Assignment block to assign values computed in an iterator (For
or While) loop to successive elements of a vector or matrix signal in a single
time step. For example, the following model uses a For block to a create a vector
signal each of whose elements equals 3*i where i is the index of the element.

Iterated assignment uses an iterator (For or While) block to generate the
indices required by the Assignment block (or for matrix assignments, two
iterator blocks to compute row and column indices separately). On the first
iteration of an iterated assignment, the Assignment block copies the first input
(U1) to the output (Y) and replaces the first element of the output Y(E0) with
the second input (U2). On successive iterations, the Assignment block simply
replaces Y(Ei) with the current value of U2 (i.e., without first copying U1 to Y).
All of this occurs in a single time step.

Data Type
Support

The Assignment block accepts signals of any data type supported by Simulink,
as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-14

Assignment

slref.book Page 15 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Input Type
You can select either Vector or Matrix input. If you select Vector, the
Source of element indices field appears. If you select Matrix, the Source
of row indices and Source of column indices fields appear.

Source of element indices
You can specify either Internal (the default) or External as the source for
the indices of the elements to be assigned values. If you select Internal, the
block dialog box displays an Elements field (see following). Use this field to
enter the element indices. If you select External, the block displays an
input port labeled E. Connect the external index source to this port.

Elements
This field appears only if you selected Internal for the Source of element
indices field. It specifies the indices of elements in U1 to be replaced by
elements in U2. The value of this parameter can be -1, a positive integer
specifying a single index, or a vector of positive integers specifying a set of
indices (e.g., [1,3,5,6]).

Source of row indices
Either Internal (the default) or External. If you select Internal, the
Rows field appears. Enter the indices of the rows to be assigned values in
this field. If you select External, the block displays an input port labeled R.
Connect an external source of row indices to this port.

Rows
This field appears only if you select Internal for the Source of row indices
field. Valid values are -1 (all rows), a single row index, or a vector of row
indices (e.g., [1,3,5,6]).
2-15

Assignment

slref.book Page 16 M onday, Septem ber 27, 2004 3:20 PM
Source of column indices
Either Internal (the default) or External. If you select Internal, the
Columns field appears. Enter the indices of the columns to be assigned
values in this field. If you select External, the block displays an input port
labeled C. Connect an external source of column indices to this port.

Columns
This field appears only if you selected internal for the Source of column
indices field. Valid values are -1 (all columns), a single column index, or a
vector of column indices (e.g., [1,3,5,6]).

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-16

Backlash

slref.book Page 17 M onday, Septem ber 27, 2004 3:20 PM
2BacklashPurpose Model the behavior of a system with play

Library Discontinuities

Description The Backlash block implements a system in which a change in input causes an
equal change in output. However, when the input changes direction, an initial
change in input has no effect on the output. The amount of side-to-side play in
the system is referred to as the deadband. The deadband is centered about the
output. This figure shows the block’s initial state, with the default deadband
width of 1 and initial output of 0.

A system with play can be in one of three modes:

• Disengaged – In this mode, the input does not drive the output and the
output remains constant.

• Engaged in a positive direction – In this mode, the input is increasing (has a
positive slope) and the output is equal to the input minus half the deadband
width.

• Engaged in a negative direction – In this mode, the input is decreasing (has
a negative slope) and the output is equal to the input plus half the deadband
width.

If the initial input is outside the deadband, the Initial output parameter value
determines whether the block is engaged in a positive or negative direction, and
the output at the start of the simulation is the input plus or minus half the
deadband width.

For example, the Backlash block can be used to model the meshing of two gears.
The input and output are both shafts with a gear on one end, and the output
shaft is driven by the input shaft. Extra space between the gear teeth
introduces play. The width of this spacing is the Deadband width parameter.
If the system is disengaged initially, the output (the position of the driven gear)
is defined by the Initial output parameter.

deadband

0 0.5 1.0-0.5-1.0
Output
2-17

Backlash

slref.book Page 18 M onday, Septem ber 27, 2004 3:20 PM
The following figures illustrate the block’s operation when the initial input is
within the deadband. The first figure shows the relationship between the input
and the output while the system is in disengaged mode (and the default
parameter values are not changed).

The next figure shows the state of the block when the input has reached the
end of the deadband and engaged the output. The output remains at its
previous value.

The final figure shows how a change in input affects the output while they are
engaged.

If the input reverses its direction, it disengages from the output. The output
remains constant until the input either reaches the opposite end of the
deadband or reverses its direction again and engages at the same end of the
deadband. Now, as before, movement in the input causes equal movement in
the output.

For example, if the deadband width is 2 and the initial output is 5, the output,
y, at the start of the simulation is as follows:

• 5 if the input, u, is between 4 and 6

• u + 1 if u < 4

• u - 1 if u > 6

0 0.5 1.0-0.5-1.0

Input within deadband

0 0.5 1.0-0.5-1.0

Input reaches end of deadband (engaged)

0 0.5 1.0-0.5-1.0

Input m oves in positive direction.
O utput = Input - (deadband width/2)
2-18

Backlash

slref.book Page 19 M onday, Septem ber 27, 2004 3:20 PM
This sample model and the plot that follows it show the effect of a sine wave
passing through a Backlash block.

The Backlash block parameters are unchanged from their default values (the
deadband width is 1 and the initial output is 0). Notice in the plotted output
following that the Backlash block output is zero until the input reaches the end
of the deadband (at 0.5). Now the input and output are engaged and the output
moves as the input does until the input changes direction (at 1.0). When the
input reaches 0, it again engages the output at the opposite end of the
deadband.

Data Type
Support

A Backlash block accepts and outputs real values of type double.

Input engages in
positive
direction. Change

Input disengages. Change in input
does not affect output.

Input engages in negative direction.
Change in input causes equal
change in output.

Input disengages. Change in input
does not affect output.

A

B

C

D

A

B

C

D

Input

Output
2-19

Backlash

slref.book Page 20 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Deadband width
The width of the deadband. The default is 1.

Initial output
The initial output value. The default is 0.

Enable zero crossing detection
Select to enable use of zero crossing detection to detect engagement with
lower and upper thresholds. For more information, see “Zero Crossing
Detection” in the Using Simulink documentation.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes, if Enable zero crossing detection is selected.
2-20

Band-Limited White Noise

slref.book Page 21 M onday, Septem ber 27, 2004 3:20 PM
2Band-Limited White NoisePurpose Introduce white noise into a continuous system

Library Sources

Description The Band-Limited White Noise block generates normally distributed random
numbers that are suitable for use in continuous or hybrid systems.

The primary difference between this block and the Random Number block is
that the Band-Limited White Noise block produces output at a specific sample
rate, which is related to the correlation time of the noise.

Theoretically, continuous white noise has a correlation time of 0, a flat power
spectral density (PSD), and a covariance of infinity. In practice, physical
systems are never disturbed by white noise, although white noise is a useful
theoretical approximation when the noise disturbance has a correlation time
that is very small relative to the natural bandwidth of the system.

In Simulink, you can simulate the effect of white noise by using a random
sequence with a correlation time much smaller than the shortest time constant
of the system. The Band-Limited White Noise block produces such a sequence.
The correlation time of the noise is the sample rate of the block. For accurate
simulations, use a correlation time much smaller than the fastest dynamics of
the system. You can get good results by specifying

where fmax is the bandwidth of the system in rad/sec.

The Algorithm Used in the Block Implementation
To produce the correct intensity of this noise, the covariance of the noise is
scaled to reflect the implicit conversion from a continuous PSD to a discrete
noise covariance. The appropriate scale factor is 1/tc, where tc is the
correlation time of the noise. This scaling ensures that the response of a
continuous system to the approximate white noise has the same covariance as
the system would have to true white noise. Because of this scaling, the
covariance of the signal from the Band-Limited White Noise block is not the
same as the Noise power (intensity) dialog box parameter. This parameter is
actually the height of the PSD of the white noise. While the covariance of true

tc
1

100

2π
fmax
------------≈
2-21

Band-Limited White Noise

slref.book Page 22 M onday, Septem ber 27, 2004 3:20 PM
white noise is infinite, the approximation used in this block has the property
that the covariance of the block output is the Noise Power divided by tc.

Data Type
Support

A Band-Limited White Noise block outputs real values of type double.

Parameters
and Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.

Noise power
The height of the PSD of the white noise. The default value is 0.1.

Sample time
The correlation time of the noise. The default value is 0.1. See “Specifying
Sample Time” in the online documentation for more information.

Seed
The starting seed for the random number generator. The default value is
23341.

Characteristics

Sample Time Discrete

Scalar Expansion Of Noise power and Seed parameters and output
2-22

Band-Limited White Noise

slref.book Page 23 M onday, Septem ber 27, 2004 3:20 PM
Dimensionalized Yes

Zero Crossing No
2-23

Bitwise Logical Operator

slref.book Page 24 M onday, Septem ber 27, 2004 3:20 PM
2Bitwise Logical OperatorPurpose Logically mask, invert, or shift the bits of an unsigned integer signal

Library Math Operations

Description The Bitwise Logical Operator performs any of a set of logical masking (AND,
OR, XOR), inversion (NOT), and shifting (SHIFT_LEFT, SHIFT_RIGHT)
operations on the bits of an unsigned integer signal. The block’s parameter
dialog lets you choose the operation to perform. You can use the Bitwise Logical
Operator block to perform bitwise operations on arrays of unsigned integer
signals.

Masking Operations
The Bitwise Logical Operator’s masking operations (AND, OR, XOR) logically
combine each bit of the input signal with the corresponding bit of a constant
operand called the mask. You specify the mask’s value and the logical
operation via the block’s parameter dialog. The mask and the logical operation
determine the value of each bit of the output signal as follows.

Operation Mask Bit Input Bit Output Bit

AND 1 1 1

1 0 0

0 1 0

0 0 0

OR 1 1 1

0 1 1

1 0 1

0 0 0

XOR 1 1 0

1 0 1

0 1 1

0 0 0
2-24

Bitwise Logical Operator

slref.book Page 25 M onday, Septem ber 27, 2004 3:20 PM
A Bitwise Operator block accepts arrays for both signals and masks. In general,
the mask must have the same dimensionality as the input signal, i.e., a 5-by-4
input signal requires a 5-by-4 mask. The block applies each element of the
mask to the corresponding input element. The following exceptions exist to the
general rule that the input and the mask must have the same dimensionality:

• If the input is scalar and the mask is an array, the block outputs an array
consisting of the result of applying each mask element to the input.

• If the input is an array and the mask is a scalar, the block outputs an array
consisting of the result of applying the mask to each element of the input.

• If the input is a 1-D array (i.e., a vector), the mask can be a row or a column
vector.

When selecting a masking operation, use the Second operand field of the
block’s parameter dialog to specify the mask or masks. You can enter any
MATLAB expression that evaluates to a scalar, matrix, or cell array. Use
strings in your mask expression to specify hexadecimal values (e.g., 'FFFF').

If necessary, the block truncates the high-order bits of the mask value to fit the
word size of the input signal’s data type. For example, suppose you specify the
mask value as 'FF00' and the input signal is of type uint8. The block truncates
the specified value to '00'.

You can use matrices to specify hexadecimal masks, but beware of the pitfalls
of such an approach. For example, the MATLAB expression['00' 'FF']
represents a single string 'FF00' rather than two strings. Similarly, the
expression ['FFFF'; '0000'] represents two strings but the expression
['FFFF'; '00'] is invalid and hence causes MATLAB to signal an error. You
can avoid these pitfalls by always using cell arrays to specify hexadecimal
values, or to mix decimal and hexadecimal values, for masks. For example, the
following model
2-25

Bitwise Logical Operator

slref.book Page 26 M onday, Septem ber 27, 2004 3:20 PM
uses a cell array ({'F0' '0F'}) to specify hexadecimal values for the masks for
a two-element input vector.

Inversion Operation
The Bitwise Logical Operator’s NOT operation inverts the bits of the input
signal. In particular, it performs a one’s complement operation on the input
signal to produce an output signal each of whose bits is 1 if the corresponding
input bit is 0 and vice versa.

Shift Operations
The Bitwise Logical Operator’s shift operations, SHIFT_LEFT and SHIFT_RIGHT,
shift the bits of the input signal left or right to produce the output signal. You
specify the amount of the shift in the Second operand field of the block’s
parameter dialog. If you specify a shift amount that is greater than the word
size of the input signal, the block uses the input word size as the shift amount,
resulting in a zero output signal. The dimensionality rules that apply to masks
and inputs also apply to shift factors and inputs.

Data Type
Support

The Bitwise Logical Operator accepts real-valued inputs of any of the unsigned
integer data types supported by Simulink: uint8, uint16, uint32. All the
elements of a vector input must be of the same data type. The output signal is
of the same data type as the input.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Bitwise operator
Specifies the bitwise operator applied to the input signal.
2-26

Bitwise Logical Operator

slref.book Page 27 M onday, Septem ber 27, 2004 3:20 PM
Second operand
Specifies the mask operand for masking operations and the shift amount
for shift operations. You can enter any MATLAB expression that evaluates
to a scalar, matrix, or cell array. If the block input is an array, the block
applies each parameter value to the corresponding element of the input. If
the input is a scalar, the block outputs an array, each of whose elements is
the result of applying the corresponding parameter value to the input. (If
the Bitwise operator is NOT, this parameter does not appear.)

Characteristics Sample Time Inherited from driving block

Scalar Expansion Of inputs and Second operand parameter

Dimensionalized Yes

States None

Zero Crossing No

Direct Feedthrough Yes
2-27

Bus Creator

slref.book Page 28 M onday, Septem ber 27, 2004 3:20 PM
2Bus CreatorPurpose Create a signal bus

Library Signal Routing

Description The Bus Creator block combines a set of signals into a bus, i.e., a group of
signals represented by a single line in a block diagram. The Bus Creator block,
when used in conjunction with the Bus Selector block, allows you to reduce the
number of lines required to route signals from one part of a diagram to another.
This makes your diagram easier to understand.

To bundle a group of signals with a Bus Creator block, set the block’s Number
of inputs ports parameter to the number of signals in the group. The block
displays the number of ports that you specify. Connect the signals to be
grouped to the resulting input ports. You can connect any type of signal to the
inputs, including other bus signals. To ungroup the signals, connect the block’s
output port to a Bus Selector port.

Naming Signals
The Bus Creator block assigns a name to each signal on the bus that it creates.
This allows you to refer to signals by name when searching for their sources
(see “Browsing Bus Signals” on page 2-29) or selecting signals for connection to
other blocks. The block offers two bus signal naming options. You can specify
that each signal on the bus inherit the name of the signal connected to the bus
(the default) or that each input signal must have a specific name.

To specify that bus signals inherit their names from input ports, select Inherit
bus signal names from input ports from the list box on the block’s
parameter dialog box. The names of the inherited bus signals appear in the
Signals in bus list box.
2-28

Bus Creator

slref.book Page 29 M onday, Septem ber 27, 2004 3:20 PM
The Bus Creator block generates names for bus signals whose corresponding
inputs do not have names. The names are of the form signaln where n is the
number of the port to which the input signal is connected.

You can change the name of any signal by editing its name on the block
diagram or in Simulink’s Signal Properties dialog box. If you change a name
in this way while the Bus Creator block’s dialog box is open, you must close and
reopen the dialog box or click the Refresh button next to the Signals in bus list
to update the name in the dialog box.

To specify that the bus inputs must have specific names, select Require input
signal names to match signals below from the list box on the block’s
parameter dialog box. The block’s parameter dialog box displays the names of
the signals currently connected to its inputs or a generated name (for example,
signal2) for an anonymous input. You can now use the parameter dialog box to
change the required names of the block’s inputs. To change the required signal
name, select the signal in the Signals in bus list. The selected signal’s name
appears in the Rename selected signal field. Edit the name in the field and
select the parameter dialog box’s Apply button to apply your edits or the OK
button to apply the edits and close the dialog box.

Browsing Bus Signals
The Signals in bus list on a Bus Creator block’s parameter dialog displays a
list of the signals entering the block. A plus sign (+) sign next to a signal
indicates that the signal is itself a bus. You can display its contents by clicking
the plus sign. If the expanded input includes bus signals, plus signs appear
next to the names of those bus signals. You can expand them as well. In this
way, you can view all signals entering the block, including those entering via
buses. To find the source of any signal entering the block, select the signal in
the Signals in bus list and click the adjacent Find button. Simulink opens the
subsystem containing the signal source, if necessary, and highlights the
source’s icon.

Note Simulink hides the name of a Bus Creator block when you copy it from
the Simulink library to a model.
2-29

Bus Creator

slref.book Page 30 M onday, Septem ber 27, 2004 3:20 PM
Data Type
Support

A Bus Creator block accepts and outputs real or complex values of any data
type supported by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Signal naming options
Select Inherit bus signal names from input ports to assign input
signal names to the corresponding bus signals. Select Require input
signal names to match signals below to specify that inputs must have
the names listed in the Signals in bus list. Selecting this option enables
the Rename selected signal field.

Number of inputs
Specifies the number of input ports on this block.

Signals in bus
The Signals in bus list box shows the signals in the output bus. A plus sign
(+) next to a signal name indicates that the signal is itself a bus. Click the
plus sign to display the subsidiary bus signals. Click the Refresh button to
update the list after editing the name of an input signal. Click the Find
button to highlight the source of the currently selected signal.
2-30

Bus Creator

slref.book Page 31 M onday, Septem ber 27, 2004 3:20 PM
Rename selected signal
Lists the name of the signal currently selected in the Signals in bus list
when the Require input signal names to match signals below option
is selected. Edit this field to change the name of the currently selected
signal.
2-31

Bus Selector

slref.book Page 32 M onday, Septem ber 27, 2004 3:20 PM
2Bus SelectorPurpose Select signals from an incoming bus

Library Signal Routing

Description The Bus Selector block accepts input from a Bus Creator block or another Bus
Selector block. This block has one input port. The number of output ports
depends on the state of the Muxed output check box. If you select Muxed
output, the signals are combined at the output port and there is only one
output port; otherwise, there is one output port for each selected signal.

Note Simulink hides the name of a Bus Selector block when you copy it from
the Simulink library to a model.

Data Type
Support

A Bus Selector block accepts and outputs real or complex values of any data
type supported by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-32

Bus Selector

slref.book Page 33 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Signals in the bus
The Signals in the bus list shows the signals in the input bus. Use the
Select>> button to select output signals. To find the source of any signal
entering the block, select the signal in the Signals in the bus list and click
the adjacent Find button. Simulink opens the subsystem containing the
signal source, if necessary, and highlights the source’s icon.

Selected signals
The Selected signals list box shows the output signals. You can order the
signals by using the Up, Down, and Remove buttons. Port connectivity is
maintained when the signal order is changed.

If an output signal listed in the Selected signals list box is not an input to
the Bus Selector block, the signal name is preceded by three question
marks (???).

The signal label at the output port is automatically set by the block except
when you select the Muxed output check box. If you try to change this
2-33

Bus Selector

slref.book Page 34 M onday, Septem ber 27, 2004 3:20 PM
label, you get an error message stating that you cannot change the signal
label of a line connected to the output of a Bus Selector block.
2-34

Check Discrete Gradient

slref.book Page 35 M onday, Septem ber 27, 2004 3:20 PM
2Check Discrete GradientPurpose Check that the absolute value of the difference between successive samples of
a discrete signal is less than an upper bound

Library Model Verification

Description The Check Discrete Gradient block checks each signal element at its input to
determine whether the absolute value of the difference between successive
samples of the element is less than an upper bound. The block’s parameter
dialog box allows you to specify the value of the upper bound (1 by default). If
the verification condition is true, the block does nothing. Otherwise the block
halts the simulation, by default, and displays an error message in Simulink’s
Diagnostic Viewer.

You can also use the Advanced Pane of the Simulation Parameters dialog
box to enable or disable all model verification blocks, including Check Discrete
Gradient blocks, in a model.

The Check Discrete Gradient block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models.
For example, you can use model verification blocks to test that signals do not
exceed specified limits during simulation. When you are satisfied that a model
is correct, you can turn error-checking off by disabling the verification blocks.
You do not have to physically remove them from the model. If you need to
modify a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Discrete Gradient block accepts single, double, int8, int16, and
int32 input signals of any dimensions.
2-35

Check Discrete Gradient

slref.book Page 36 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Maximum gradient
Upper bound on the gradient of the discrete input signal.

Enable Assertion
Unchecking this option disables the Check Discrete Gradient block, that is,
causes the model to behave as if the block did not exist. The Advanced
Pane of the Simulation Parameters dialog box allows you to enable or
disable all Check Discrete Gradient blocks in a model regardless of the
setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Discrete Gradient block to halt the
simulation when the block’s input is zero and display an error message in
Simulink’s Simulation Diagnostics viewer. Otherwise, the block displays
a warning message in the MATLAB command window and continues the
simulation.

Output Assertion Signal
If checked, this option causes the block to output a Boolean signal that is
true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is boolean if you have
selected the Boolean logic signals option on the Advanced pane of
2-36

Check Discrete Gradient

slref.book Page 37 M onday, Septem ber 27, 2004 3:20 PM
Simulink’s Simulation Parameters dialog box. Otherwise the data type of
the output signal is double.

Select Icon Type
Type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical
expression that represents the assertion condition. If the icon is too small
to display the expression, the text icon displays an exclamation point. To
see the expression, enlarge the icon.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-37

Check Dynamic Gap

slref.book Page 38 M onday, Septem ber 27, 2004 3:20 PM
2Check Dynamic GapPurpose Check that a gap of possibly varying width occurs in the range of a signal’s
amplitudes

Library Model Verification

Description The Check Dynamic Gap block checks that a gap of possibly varying width
occurs in the range of a signal’s amplitudes. The test signal is the signal
connected to the input labeled sig. The inputs labeled min and max specify the
lower and upper bounds of the dynamic gap, respectively. If the verification
condition is true, the block does nothing. If not, the block halts the simulation,
by default, and displays an error message.

The Check Dynamic Gap block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models.
For example, you can use model verification blocks to test that signals do not
exceed specified limits during simulation. When you are satisfied that a model
is correct, you can turn error-checking off by disabling the verification blocks.
You do not have to physically remove them from the model. If you need to
modify a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Dynamic Gap block accepts input signals of any dimensions and of
any data type supported by Simulink. All three input signals must have the
same dimension and data type. If the inputs are nonscalar, the block checks
each element of the input test signal to the corresponding elements of the
reference signals.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-38

Check Dynamic Gap

slref.book Page 39 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Enable Assertion
Unchecking this option disables the Check Dynamic Gap block, that is,
causes the model to behave as if the block did not exist. The Advanced
Pane of the Simulation Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check Dynamic
Gap blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Assertion block to halt the simulation
when the block’s input is zero and display an error message in Simulink’s
Simulation Diagnostics viewer. Otherwise, the block displays a warning
message in the MATLAB command window and continues the simulation.

Output Assertion Signal
If checked, this option causes the block to output a Boolean signal that is
true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is boolean if you have
selected the Boolean logic signals option on the Advanced pane of
Simulink’s Simulation Parameters dialog box. Otherwise the data type of
the output signal is double.
2-39

Check Dynamic Gap

slref.book Page 40 M onday, Septem ber 27, 2004 3:20 PM
Select Icon Type
Type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical
expression that represents the assertion condition. If the icon is too small
to display the expression, the text icon displays an exclamation point. To
see the expression, enlarge the icon.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-40

Check Dynamic Lower Bound

slref.book Page 41 M onday, Septem ber 27, 2004 3:20 PM
2Check Dynamic Lower BoundPurpose Check that one signal is always less than another signal

Library Model Verification

Description The Check Dynamic Lower Bound block checks that the amplitude of a test
signal is less than the amplitude of a reference signal at the current time step.
The test signal is the signal connected to the input labeled sig. If the
verification condition is true, the block does nothing. If not, the block halts the
simulation, by default, and displays an error message.

The Check Dynamic Lower Bound block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models.
For example, you can use model verification blocks to test that signals do not
exceed specified limits during simulation. When you are satisfied that a model
is correct, you can turn error-checking off by disabling the verification blocks.
You do not have to physically remove them from the model. If you need to
modify a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Dynamic Lower Bound block accepts input signals of any data type
supported by Simulink. The test and the reference signals must have the same
dimensions and data type. If the inputs are nonscalar, the block checks each
element of the input test signal to the corresponding elements of the reference
signal.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box
2-41

Check Dynamic Lower Bound

slref.book Page 42 M onday, Septem ber 27, 2004 3:20 PM
Enable Assertion
Unchecking this option disables the Check Dynamic Lower Bound block,
that is, causes the model to behave as if the block did not exist. The
Advanced Pane of the Simulation Parameters dialog box allows you to
enable or disable all model verification blocks, including Check Dynamic
Lower Bound blocks, in a model regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Lower Bound block to
halt the simulation when the block’s input is zero and display an error
message in Simulink’s Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB command window and
continues the simulation.

Output Assertion Signal
If checked, this option causes the block to output a Boolean signal that is
true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is boolean if you have
selected the Boolean logic signals option on the Advanced pane of
Simulink’s Simulation Parameters dialog box. Otherwise the data type of
the output signal is double.

Select Icon Type
Type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical
expression that represents the assertion condition. If the icon is too small
to display the expression, the text icon displays an exclamation point. To
see the expression, enlarge the icon.
2-42

Check Dynamic Lower Bound

slref.book Page 43 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-43

Check Dynamic Range

slref.book Page 44 M onday, Septem ber 27, 2004 3:20 PM
2Check Dynamic RangePurpose Check that a signal falls inside a range of amplitudes that varies from time step
to time step

Library Model Verification

Description The Check Dynamic Range block checks that a test signal falls inside a range
of amplitudes at each time step. The width of the range can vary from time step
to time step. The input labeled sig is the test signal. The inputs labeled min and
max are the lower and upper bounds of the valid range at the current time step.
If the verification condition is true, the block does nothing. If not, the block
halts the simulation, by default, and displays an error message.

The Check Dynamic Range block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models.
For example, you can use model verification blocks to test that signals do not
exceed specified limits during simulation. When you are satisfied that a model
is correct, you can turn error-checking off by disabling the verification blocks.
You do not have to physically remove them from the model. If you need to
modify a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Dynamic Range block accepts input signals of any dimensions and
of any data type supported by Simulink. All three input signals must have the
same dimension and data type. If the inputs are nonscalar, the block checks
each element of the input test signal to the corresponding elements of the
reference signals.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-44

Check Dynamic Range

slref.book Page 45 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Enable Assertion
Unchecking this option disables the Check Dynamic Range block, that is,
causes the model to behave as if the block did not exist. The Advanced
Pane of the Simulation Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check Dynamic
Range blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Assertion block to halt the simulation
when the block’s input is zero and display an error message in Simulink’s
Simulation Diagnostics viewer. Otherwise, the block displays a warning
message in the MATLAB command window and continues the simulation.

Output Assertion Signal
If checked, this option causes the block to output a Boolean signal that is
true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is boolean if you have
selected the Boolean logic signals option on the Advanced pane of
Simulink’s Simulation Parameters dialog box. Otherwise the data type of
the output signal is double.

Select Icon Type
Type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the
2-45

Check Dynamic Range

slref.book Page 46 M onday, Septem ber 27, 2004 3:20 PM
assertion condition on the icon. The text option displays a mathematical
expression that represents the assertion condition. If the icon is too small
to display the expression, the text icon displays an exclamation point. To
see the expression, enlarge the icon.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-46

Check Dynamic Upper Bound

slref.book Page 47 M onday, Septem ber 27, 2004 3:20 PM
2Check Dynamic Upper BoundPurpose Check that one signal is always greater than another signal

Library Model Verification

Description The Check Dynamic Upper Bound block checks that the amplitude of a test
signal is greater than the amplitude of a reference signal at the current time
step. The test signal is the signal connected to the input labeled sig. If the
verification condition is true, the block does nothing. If not, the block halts the
simulation, by default, and displays an error message.

The Check Dynamic Upper Bound block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models.
For example, you can use model verification blocks to test that signals do not
exceed specified limits during simulation. When you are satisfied that a model
is correct, you can turn error-checking off by disabling the verification blocks.
You do not have to physically remove them from the model. If you need to
modify a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Dynamic Upper Bound block accepts input signals of any
dimensions and of any data type supported by Simulink. The test and the
reference signals must have the same dimensions and data type. If the inputs
are nonscalar, the block compares each element of the input test signal to the
corresponding elements of the reference signal.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-47

Check Dynamic Upper Bound

slref.book Page 48 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Enable Assertion
Unchecking this option disables the Check Dynamic Upper Bound block,
that is, causes the model to behave as if the block did not exist. The
Advanced Pane of the Simulation Parameters dialog box allows you to
enable or disable all model verification blocks, including Check Dynamic
Upper Bound blocks, in a model regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Upper Bound block to
halt the simulation when the block’s input is zero and display an error
message in Simulink’s Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB command window and
continues the simulation.

Output Assertion Signal
If checked, this option causes the block to output a Boolean signal that is
true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is boolean if you have
selected the Boolean logic signals option on the Advanced pane of
Simulink’s Simulation Parameters dialog box. Otherwise the data type of
the output signal is double.
2-48

Check Dynamic Upper Bound

slref.book Page 49 M onday, Septem ber 27, 2004 3:20 PM
Select Icon Type
Type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical
expression that represents the assertion condition. If the icon is too small
to display the expression, the text icon displays an exclamation point. To
see the expression, enlarge the icon.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-49

Check Input Resolution

slref.book Page 50 M onday, Septem ber 27, 2004 3:20 PM
2Check Input ResolutionPurpose Check that the input signal has a specified resolution

Library Model Verification

Description The Check Input Resolution block checks whether the input signal has a
specified scalar or vector resolution (see “Resolution” on page 2-51). If the
resolution is a scalar, the input signal must be a multiple of the resolution
within a 10e-3 tolerance. If the resolution is a vector, the input signal must
equal an element of the resolution vector. If the verification condition is true,
the block does nothing. If not, the block halts the simulation, by default, and
displays an error message.

The Check Input Resolution block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models.
For example, you can use model verification blocks to test that signals do not
exceed specified limits during simulation. When you are satisfied that a model
is correct, you can turn error-checking off by disabling the verification blocks.
You do not have to physically remove them from the model. If you need to
modify a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Input Resolution block accepts input signals of any dimensions and
of any data type supported by Simulink. If the input signal is nonscalar, the
block checks the resolution of each element of the input test signal.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-50

Check Input Resolution

slref.book Page 51 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Resolution
Resolution that the input signal must have.

Enable Assertion
Unchecking this option disables the Assertion block, that is, causes the
model to behave as if the Assertion block did not exist. The Advanced Pane
of the Simulation Parameters dialog box allows you to enable or disable
all Assertion blocks in a model regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Assertion block to halt the simulation
when the block’s input is zero and display an error message in Simulink’s
Simulation Diagnostics viewer. Otherwise, the block displays a warning
message in the MATLAB command window and continues the simulation.

Output Assertion Signal
If checked, this option causes the block to output a Boolean signal that is
true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is boolean if you have
selected the Boolean logic signals option on the Advanced pane of
Simulink’s Simulation Parameters dialog box. Otherwise the data type of
the output signal is double.
2-51

Check Input Resolution

slref.book Page 52 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-52

Check Static Gap

slref.book Page 53 M onday, Septem ber 27, 2004 3:20 PM
2Check Static GapPurpose Check that a gap exists in a signal’s range of amplitudes

Library Model Verification

Description The Check Static Gap block checks that each element of the input signal is less
than (or optionally equal to) a static lower bound or greater than (or optionally
equal to) a static upper bound at the current time step. If the verification
condition is true, the block does nothing. If not, the block halts the simulation,
by default, and displays an error message.

The Check Static Gap block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For
example, you can use model verification blocks to test that signals do not
exceed specified limits during simulation. When you are satisfied that a model
is correct, you can turn error-checking off by disabling the verification blocks.
You do not have to physically remove them from the model. If you need to
modify a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Static Gap block accepts input signals of any dimensions and of any
data type supported by Simulink.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-53

Check Static Gap

slref.book Page 54 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Upper bound
Upper bound of the gap in the input signal’s range of amplitudes.

Inclusive upper bound
If checked, this option specifies that the gap includes the upper bound.

Lower bound
Lower bound of the gap in the input signal’s range of amplitudes.

Inclusive lower bound
If checked, this option specifies that the gap includes the lower bound.

Enable Assertion
Unchecking this option disables the Check Static Gap block, that is, causes
the model to behave as if the block did not exist. The Advanced Pane of the
Simulation Parameters dialog box allows you to enable or disable all
model verification blocks, including Check Static Gap blocks, in a model
regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.
2-54

Check Static Gap

slref.book Page 55 M onday, Septem ber 27, 2004 3:20 PM
Stop simulation when assertion fails
If checked, this option causes the Check Static Gap block to halt the
simulation when the block’s input is zero and display an error message in
Simulink’s Simulation Diagnostics viewer. Otherwise, the block displays
a warning message in the MATLAB command window and continues the
simulation.

Output Assertion Signal
If checked, this option causes the block to output a Boolean signal that is
true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is boolean if you have
selected the Boolean logic signals option on the Advanced pane of
Simulink’s Simulation Parameters dialog box. Otherwise the data type of
the output signal is double.

Select Icon Type
Type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical
expression that represents the assertion condition. If the icon is too small
to display the expression, the text icon displays an exclamation point. To
see the expression, enlarge the icon.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-55

Check Static Lower Bound

slref.book Page 56 M onday, Septem ber 27, 2004 3:20 PM
2Check Static Lower BoundPurpose Check that a signal is greater than (or optionally equal to) a static lower bound

Library Model Verification

Description The Check Static Lower Bound block checks that each element of the input
signal is greater than (or optionally equal to) a specified lower bound at the
current time step. The block’s parameter dialog box allows you to specify the
value of the lower bound and whether the lower bound is inclusive. If the
verification condition is true, the block does nothing. If not, the block halts the
simulation, by default, and displays an error message.

The Check Static Lower Bound block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models.
For example, you can use model verification blocks to test that signals do not
exceed specified limits during simulation. When you are satisfied that a model
is correct, you can turn error-checking off by disabling the verification blocks.
You do not have to physically remove them from the model. If you need to
modify a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Static Lower Bound block accepts input signals of any dimensions
and of any data type supported by Simulink.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-56

Check Static Lower Bound

slref.book Page 57 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Lower bound
Lower bound on the range of amplitudes that the input signal can have.

Inclusive boundary
Checking this option makes the range of valid input amplitudes include the
lower bound.

Enable Assertion
Unchecking this option disables the Check Static Lower Bound block, that
is, causes the model to behave as if the block did not exist. The Advanced
Pane of the Simulation Parameters dialog box allows you to enable or
disable all model verification blocks, including Check Static Lower Bound
blocks, in a model regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Lower Bound block to halt
the simulation when the block’s input is zero and display an error message
in Simulink’s Simulation Diagnostics viewer. Otherwise, the block
displays a warning message in the MATLAB command window and
continues the simulation.
2-57

Check Static Lower Bound

slref.book Page 58 M onday, Septem ber 27, 2004 3:20 PM
Output Assertion Signal
If checked, this option causes the block to output a Boolean signal that is
true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is boolean if you have
selected the Boolean logic signals option on the Advanced pane of
Simulink’s Simulation Parameters dialog box. Otherwise the data type of
the output signal is double.

Select Icon Type
Type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical
expression that represents the assertion condition. If the icon is too small
to display the expression, the text icon displays an exclamation point. To
see the expression, enlarge the icon.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-58

Check Static Range

slref.book Page 59 M onday, Septem ber 27, 2004 3:20 PM
2Check Static RangePurpose Check that a signal falls inside a fixed range of amplitudes

Library Model Verification

Description The Check Static Range block checks that each element of the input signal falls
inside the same range of amplitudes at each time step. The block’s parameter
dialog box allows you to specify the upper and lower bounds of the valid
amplitude range and whether the range includes the bounds. If the verification
condition is true, the block does nothing. If not, the block halts the simulation,
by default, and displays an error message.

The Check Static Range block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models.
For example, you can use model verification blocks to test that signals do not
exceed specified limits during simulation. When you are satisfied that a model
is correct, you can turn error-checking off by disabling the verification blocks.
You do not have to physically remove them from the model. If you need to
modify a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Static Range block accepts input signals of any dimensions and of
any data type supported by Simulink.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-59

Check Static Range

slref.book Page 60 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Upper bound
Upper bound of the range of valid input signal amplitudes.

Inclusive upper bound
Checking this option specifies that the valid signal range includes the
upper bound.

Lower bound
Lower bound of the range of valid input signal amplitudes.

Inclusive lower bound
Checking this option specifies that the valid signal range includes the
lower bound.

Enable Assertion
Unchecking this option disables the Check Static Range block, that is,
causes the model to behave as if the block did not exist. The Advanced
Pane of the Simulation Parameters dialog box allows you to enable or
disable all model verification blocks, including Check Static Range blocks,
in a model regardless of the setting of this option.
2-60

Check Static Range

slref.book Page 61 M onday, Septem ber 27, 2004 3:20 PM
Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Range block to halt the
simulation when the block’s input is zero and display an error message in
Simulink’s Simulation Diagnostics viewer. Otherwise, the block displays
a warning message in the MATLAB command window and continues the
simulation.

Output Assertion Signal
If checked, this option causes the block to output a Boolean signal that is
true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is boolean if you have
selected the Boolean logic signals option on the Advanced pane of
Simulink’s Simulation Parameters dialog box. Otherwise the data type of
the output signal is double.

Select Icon Type
Type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical
expression that represents the assertion condition. If the icon is too small
to display the expression, the text icon displays an exclamation point. To
see the expression, enlarge the icon.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-61

Check Static Upper Bound

slref.book Page 62 M onday, Septem ber 27, 2004 3:20 PM
2Check Static Upper BoundPurpose Check that a signal is greater than (or optionally equal to) a static lower bound

Library Model Verification

Description The Check Static Upper Bound block checks that each element of the input
signal is less than (or optionally equal to) a specified lower bound at the current
time step. The block’s parameter dialog box allows you to specify the value of
the upper bound and whether the bound is inclusive. If the verification
condition is true, the block does nothing. If not, the block halts the simulation,
by default, and displays an error message.

The Check Static Upper Bound block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating models.
For example, you can use model verification blocks to test that signals do not
exceed specified limits during simulation. When you are satisfied that a model
is correct, you can turn error-checking off by disabling the verification blocks.
You do not have to physically remove them from the model. If you need to
modify a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Static Upper Bound block accepts input signals of any dimensions
and of any data type supported by Simulink.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-62

Check Static Upper Bound

slref.book Page 63 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Upper bound
Upper bound on the range of amplitudes that the input signal can have.

Inclusive boundary
Checking this option makes the range of valid input amplitudes include the
upper bound.

Enable Assertion
Unchecking this option disables the Check Static Upper Bound block, that
is, causes the model to behave as if the block did not exist. The Advanced
Pane of the Simulation Parameters dialog box allows you to enable or
disable all model verification blocks, including Check Static Lower Bound
blocks, in a model regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Upper Bound block to halt
the simulation when the block’s input is zero and display an error message
in Simulink’s Simulation Diagnostics viewer. Otherwise, the block
displays a warning message in the MATLAB command window and
continues the simulation.
2-63

Check Static Upper Bound

slref.book Page 64 M onday, Septem ber 27, 2004 3:20 PM
Output Assertion Signal
If checked, this option causes the block to output a Boolean signal that is
true (1) at each time step if the assertion succeeds and false (0) if the
assertion fails. The data type of the output signal is boolean if you have
selected the Boolean logic signals option on the Advanced pane of
Simulink’s Simulation Parameters dialog box. Otherwise the data type of
the output signal is double.

Select Icon Type
Type of icon used to display this block in a block diagram: either graphic
or text. The graphic option displays a graphical representation of the
assertion condition on the icon. The text option displays a mathematical
expression that represents the assertion condition. If the icon is too small
to display the expression, the text icon displays an exclamation point. To
see the expression, enlarge the icon.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-64

Chirp Signal

slref.book Page 65 M onday, Septem ber 27, 2004 3:20 PM
2Chirp SignalPurpose Generate a sine wave with increasing frequency

Library Sources

Description The Chirp Signal block generates a sine wave whose frequency increases at a
linear rate with time. You can use this block for spectral analysis of nonlinear
systems. The block generates a scalar or vector output.

The parameters, Initial frequency, Target time, and Frequency at target
time, determine the block’s output. You can specify any or all of these variables
as scalars or arrays. All the parameters specified as arrays must have the same
dimensions. The block expands scalar parameters to have the same dimensions
as the array parameters. The block output has the same dimensions as the
parameters unless the Interpret vector parameters as 1-D option is selected.
If this option is selected and the parameters are row or column vectors, the
block outputs a vector (1-D array) signal.

Data Type
Support

A Chirp Signal block outputs a real-valued signal of type double.

Parameters
and Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.

Initial frequency
The initial frequency of the signal, specified as a scalar or matrix value.
The default is 0.1 Hz.
2-65

Chirp Signal

slref.book Page 66 M onday, Septem ber 27, 2004 3:20 PM
Target time
The time at which the frequency reaches the Frequency at target time
parameter value, a scalar or matrix value. The frequency continues to
change at the same rate after this time. The default is 100 seconds.

Frequency at target time
The frequency of the signal at the target time, a scalar or matrix value. The
default is 1 Hz.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Initial frequency, Target
time, and Frequency at target time parameters result in a vector output
whose elements are the elements of the row or column.

Characteristics Sample Time Continuous

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing No
2-66

Clock

slref.book Page 67 M onday, Septem ber 27, 2004 3:20 PM
2ClockPurpose Display and provide the simulation time

Library Sources

Description The Clock block outputs the current simulation time at each simulation step.
This block is useful for other blocks that need the simulation time.

When you need the current time within a discrete system, use the Digital Clock
block.

Data Type
Support

A Clock block outputs a real-valued signal of type double.

Parameters
and Dialog Box

Display time
Use the Display time check box to display the current simulation time
inside the Clock block icon.

Decimation
The Decimation parameter value is the increment at which the clock is
updated; it can be any positive integer. For example, if the decimation is
1000, then, for a fixed integration step of 1 millisecond, the clock updates
at 1 second, 2 seconds, and so on.
2-67

Clock

slref.book Page 68 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Sample Time Continuous

Scalar Expansion N/A

Dimensionalized No

Zero Crossing No
2-68

Combinatorial Logic

slref.book Page 69 M onday, Septem ber 27, 2004 3:20 PM
2Combinatorial LogicPurpose Implement a truth table

Library Math Operations

Description The Combinatorial Logic block implements a standard truth table for modeling
programmable logic arrays (PLAs), logic circuits, decision tables, and other
Boolean expressions. You can use this block in conjunction with Memory blocks
to implement finite-state machines or flip-flops.

You specify a matrix that defines all possible block outputs as the Truth table
parameter. Each row of the matrix contains the output for a different
combination of input elements. You must specify outputs for every combination
of inputs. The number of columns is the number of block outputs.

The relationship between the number of inputs and the number of rows is

number of rows = 2 ^ (number of inputs)

Simulink returns a row of the matrix by computing the row’s index from the
input vector elements. Simulink computes the index by building a binary
number where input vector elements having zero values are 0 and elements
having nonzero values are 1, then adding 1 to the result. For an input vector,
u, of m elements,

row index = 1 + u(m)*20 + u(m 1)*21 + ... + u(1)*2m 1

Example of Two-Input AND Function
This example builds a two-input AND function, which returns 1 when both
input elements are 1, and 0 otherwise. To implement this function, specify the
Truth table parameter value as [0; 0; 0; 1]. The portion of the model that
provides the inputs to and the output from the Combinatorial Logic block
might look like this.

The following table indicates the combination of inputs that generate each
output. The input signal labeled “Input 1” corresponds to the column in the
table labeled Input 1. Similarly, the input signal “Input 2” corresponds to the
2-69

Combinatorial Logic

slref.book Page 70 M onday, Septem ber 27, 2004 3:20 PM
column with the same name. The combination of these values determines the
row of the Output column of the table that is passed as block output.

For example, if the input vector is [1 0], the input references the third row:

(21*1 + 1)

The output value is 0.

Example of Circuit
This sample circuit has three inputs: the two bits (a and b) to be summed and
a carry-in bit (c). It has two outputs: the carry-out bit (c') and the sum bit (s).
Here are the truth table and the outputs associated with each combination of
input values for this circuit.

Row Input 1 Input 2 Output

1 0 0 0

2 0 1 0

3 1 0 0

4 1 1 1

Inputs Outputs

a b c c' s

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0
2-70

Combinatorial Logic

slref.book Page 71 M onday, Septem ber 27, 2004 3:20 PM
To implement this adder with the Combinatorial Logic block, you enter the
8-by-2 matrix formed by columns c' and s as the Truth table parameter.

You can also implement sequential circuits (that is, circuits with states) with
the Combinatorial Logic block by including an additional input for the state of
the block and feeding the output of the block back into this state input.

Data Type
Support

The type of signals accepted by a Combinatorial Logic block depends on
whether you selected Simulink’s Boolean logic signals option (see “Enabling
Strict Boolean Type Checking” in Using Simulink). If this option is enabled, the
block accepts real signals of type boolean or double. The truth table can have
Boolean values (0 or 1) of any data type. If the table contains non-Boolean
values, the table’s data type must be double.

The type of the output is the same as that of the input except that the block
outputs double if the input is boolean and the truth table contains
non-Boolean values.

If Boolean compatibility mode is disabled, the Combinatorial Logic block
accepts only signals of type boolean. The block outputs double if the truth
table contains non-Boolean values of type double. Otherwise, the output is
boolean.

Parameters
and Dialog Box

1 1 0 1 0

1 1 1 1 1

Inputs Outputs

a b c c' s
2-71

Combinatorial Logic

slref.book Page 72 M onday, Septem ber 27, 2004 3:20 PM
Truth table
The matrix of outputs. Each column corresponds to an element of the
output vector and each row corresponds to a row of the truth table.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes; the output width is the number of columns of the
Truth table parameter

Zero Crossing No
2-72

Complex to Magnitude-Angle

slref.book Page 73 M onday, Septem ber 27, 2004 3:20 PM
2Complex to Magnitude-AnglePurpose Compute the magnitude and/or phase angle of a complex signal

Library Math Operations

Description The Complex to Magnitude-Angle block accepts a complex-valued signal of type
double. It outputs the magnitude and/or phase angle of the input signal,
depending on the setting of the Output parameter. The outputs are real values
of type double. The input can be an array of complex signals, in which case the
output signals are also arrays. The magnitude signal array contains the
magnitudes of the corresponding complex input elements. The angle output
similarly contains the angles of the input elements.

Data Type
Support

See the preceding description.

Parameters
and Dialog Box

Output
Determines the output of this block. Choose from the following values:
MagnitudeAndAngle (outputs the input signal’s magnitude and phase angle
in radians), Magnitude (outputs the input’s magnitude), Angle (outputs the
input’s phase angle in radians).

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-73

Complex to Real-Imag

slref.book Page 74 M onday, Septem ber 27, 2004 3:20 PM
2Complex to Real-ImagPurpose Output the real and imaginary parts of a complex input signal

Library Math Operations

Description The Complex to Real-Imag block accepts a complex-valued signal of any data
type supported by Simulink, as well as fixed-point data types. It outputs the
real and/or imaginary part of the input signal, depending on the setting of the
Output parameter. The real outputs are of the same data type as the complex
input. The input can be an array (vector or matrix) of complex signals, in which
case the output signals are arrays of the same dimensions. The real array
contains the real parts of the corresponding complex input elements. The
imaginary output similarly contains the imaginary parts of the input elements.

Data Type
Support

See the preceding description. For a discussion on the data types supported by
Simulink, refer to “Data Types Supported by Simulink” in the Using Simulink
documentation.

Parameters
and Dialog Box

Output
Determines the output of this block. Choose from the following values:
RealAndImag (outputs the input signal’s real and imaginary parts), Real
(outputs the input’s real part), Imag (outputs the input’s imaginary part).

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-74

Configurable Subsystem

slref.book Page 75 M onday, Septem ber 27, 2004 3:20 PM
2Configurable SubsystemPurpose Represent any block selected from a user-specified library of blocks

Library Ports & Subsystems

Description A Configurable Subsystem block represents one of a set of blocks contained in
a specified library of blocks. The block’s context menu lets you choose which
block the configurable subsystem represents.

Configurable Subsystem blocks simplify creation of models that represent
families of designs. For example, suppose that you want to model an
automobile that offers a choice of engines. To model such a design, you would
first create a library of models of the engine types available with the car. You
would then use a Configurable Subsystem block in your car model to represent
the choice of engines. To model a particular variant of the basic car design, a
user need only choose the engine type, using the configurable engine block’s
dialog.

To create a configurable subsystem in a model, you must first create a library
containing a master configurable subsystem and the blocks that it represents.
You can then create configurable instances of the master subsystem by
dragging copies of the master subsystem from the library and dropping them
into models.

Creating a Master Configurable Subsystem
To create a master configurable subsystem:

1 Create a library of blocks representing the various configurations of the
configurable subsystem.

2 Save the library.

3 Create an instance of the Configurable Subsystem block in the library.

To do this, drag a copy of the Configurable Subsystem block from the
Simulink Signals and Systems library into the library you created in the
preceding step.

4 Display the Configurable Subsystem block’s dialog by double-clicking it. The
dialog displays a list of the other blocks in the library.

5 Select the blocks that represent the various configurations of the
configurable subsystems you are creating.
2-75

Configurable Subsystem

slref.book Page 76 M onday, Septem ber 27, 2004 3:20 PM
6 Select Block Choice from the subsystem’s context menu.

The context menu displays a submenu listing the blocks that the subsystem
can represent.

7 Select the block that you want the subsystem to represent by default.

8 Close the dialog.

9 Save the library.

Note If you add or remove blocks from a library, you must recreate any
Configurable Subsystem blocks that use the library.

Creating an Instance of a Configurable Subsystem
To create an instance of a configurable subsystem in a model,

1 Open the library containing the master configurable subsystem.

2 Drag a copy of the master into the model.

3 Select Block Choice from the copy’s context menu.

4 Select the block that you want the configurable subsystem to represent.

The instance of the configurable system displays the icon and parameter dialog
box of the block that it represents.

Mapping I/O Ports
A configurable subsystem displays a set of input and output ports
corresponding to input and output ports in the selected library. Simulink uses
the following rules to map library ports to Configurable Subsystem block ports:

• Map each uniquely named input/output port in the library to a separate
input/output port of the same name on the Configurable Subsystem block.

• Map all identically named input/output ports in the library to the same
input/output ports on the Configurable Subsystem block.

• Terminate any input/output port not used by the currently selected library
block with a Terminator/Ground block.
2-76

Configurable Subsystem

slref.book Page 77 M onday, Septem ber 27, 2004 3:20 PM
This mapping allows a user to change the library block represented by a
Configurable Subsystem block without having to rewire connections to the
Configurable Subsystem block.

For example, suppose that a library contains two blocks A and B and that block
A has input ports labeled a, b, and c and an output port labeled d and that block
B has input ports labeled a and b and an output port labeled e. A Configurable
Subsystem block based on this library would have three input ports labeled a,
b, and c, respectively, and two output ports labeled d and e, respectively, as
illustrated in the following figure.

In this example, port a on the Configurable Subsystem block connects to port a
of the selected library block no matter which block is selected. On the other
hand, port c on the Configurable Subsystem block functions only if library
block A is selected. Otherwise, it simply terminates.

Note A Configurable Subsystem block does not provide ports that correspond
to non-I/O ports, such as the trigger and enable ports on triggered and enabled
subsystems. Thus, you cannot use a Configurable Subsystem block directly to
represent blocks that have such ports. You can do so indirectly, however, by
wrapping such blocks in subsystem blocks that have input or output ports
connected to the non-I/O ports.

Data Type
Support

A Configurable Subsystem block accepts and outputs signals of the same types
as are accepted or output by the block that it currently represents. The data
types may be any supported by Simulink, as well as fixed-point data types.
2-77

Configurable Subsystem

slref.book Page 78 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

List of block choices
Select the blocks you want to include as members of the configurable
subsystem. You can include user-defined subsystems as blocks.

Port information
Lists of input and output ports of member blocks. In the case of multiports,
you can rearrange selected port positions by clicking the Up and Down
buttons.

Characteristics A Configurable Subsystem block has the characteristics of the block that it
currently represents. Double-clicking the block opens the dialog box for the
block that it currently represents.
2-78

Constant

slref.book Page 79 M onday, Septem ber 27, 2004 3:20 PM
2ConstantPurpose Generate a constant value

Library Simulink Sources and Fixed-Point Blockset Sources

Description The Constant block generates a real or complex constant value. The block
generates a scalar, vector, or matrix output, depending on the dimensionality
of the Constant value parameter and the setting of the Interpret vector
parameters as 1-D parameter.

The output of the block has the same dimensions and elements of the Constant
value parameter. If you specify a vector for this parameter, and you want the
block to interpret it as 1-D, select the Interpret vector parameters as 1-D
parameter.

Selecting the Allow in-diagram editing parameter allows you to change the
output of this block by editing the constant value displayed in the block
diagram as well as by opening the block’s parameter dialog box. To change the
block’s value when this option is selected, left-click the mouse cursor anywhere
in the value displayed in the block’s icon while holding down the Ctrl key on
your keyboard. Simulink redisplays the constant value in an edit field.

Edit the displayed value and left-click anywhere in the diagram outside the
edit field to set your changes.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” in the Fixed-Point
Blockset documentation.

Data Type
Support

By default, a Constant block outputs a signal whose data type and complexity
is the same as that of the block’s Constant value parameter. However, you can
2-79

Constant

slref.book Page 80 M onday, Septem ber 27, 2004 3:20 PM
specify the output to be any supported data type supported by Simulink, as well
as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.

Constant value
Constant value output by the block. It can be a scalar, vector, or matrix.

Interpret vector parameters as 1-D
If selected, a vector specified for the Constant value parameter results in
a 1-D signal.

Show implementation details
If selected, additional parameters specific to implementation of the block
become visible as shown.

Allow in-diagram editing
If selected, this option allows you to change the block’s output by editing
the constant value displayed on the block diagram as well as by opening
this parameter dialog box. See the block description for more information.
2-80

Constant

slref.book Page 81 M onday, Septem ber 27, 2004 3:20 PM
Output data type mode
Specify how the data type of the output is designated. The data type can be
inherited through backpropagation, or can be designated in the Constant
value parameter; for example int8(29). You can also choose a built-in
data type from the drop-down list. Lastly, if you choose Specify via
dialog, the Output data type, Output Scaling Mode, and Output scaling
value parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Output data type
mode parameter.

Output Scaling Mode
Specify how the scaling of the output is designated. The output can be
automatically scaled to maintain best vector-wise precision without
overflow, or you can choose to specify the scaling in the dialog via the
Output scaling value parameter. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Output
2-81

Constant

slref.book Page 82 M onday, Septem ber 27, 2004 3:20 PM
data type mode parameter, and if Use specified scaling is selected for
the Output Scaling Mode parameter.

Conversions
and Operations

The Constant value parameter is converted from its data type to the specified
output data type offline using round-to-nearest and saturation. Refer to
“Parameter Conversions” in the Fixed-Point Blockset documentation for more
information about parameter conversions.

Characteristics Dimensionalized Yes

Direct Feedthrough No

Sample Time Constant

Scalar Expansion No

Zero Crossing No
2-82

Coulomb and Viscous Friction

slref.book Page 83 M onday, Septem ber 27, 2004 3:20 PM
2Coulomb and Viscous FrictionPurpose Model discontinuity at zero, with linear gain elsewhere

Library Discontinuities

Description The Coulomb and Viscous Friction block models Coulomb (static) and viscous
(dynamic) friction. The block models a discontinuity at zero and a linear gain
otherwise. The offset corresponds to the Coulombic friction; the gain
corresponds to the viscous friction. The block is implemented as

y = sign(u) * (Gain * abs(u) + Offset)

where y is the output, u is the input, and Gain and Offset are block
parameters.

The block accepts one input and generates one output.

Data Type
Support

A Coulomb and Viscous Friction block accepts and outputs real signals of type
double.

Parameters
and Dialog Box

Coulomb friction value
The offset, applied to all input values. The default is [1 3 2 0].

Coefficient of viscous friction
The signal gain at nonzero input points. The default is 1.
2-83

Coulomb and Viscous Friction

slref.book Page 84 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing Yes, at the point where the static friction is overcome
2-84

Data Store Memory

slref.book Page 85 M onday, Septem ber 27, 2004 3:20 PM
2Data Store MemoryPurpose Define a data store

Library Signal Routing

Description The Data Store Memory block defines and initializes a named shared data
store, which is a memory region usable by Data Store Read and Data Store
Write blocks with the same data store name.

Each data store must be defined by a Data Store Memory block. The location of
the Data Store Memory block that defines a data store determines the Data
Store Read and Data Store Write blocks that can access the data store:

• If the Data Store Memory block is in the top-level system, the data store can
be accessed by Data Store Read and Data Store Write blocks located
anywhere in the model.

• If the Data Store Memory block is in a subsystem, the data store can be
accessed by Data Store Read and Data Store Write blocks located in the same
subsystem or in any subsystem below it in the model hierarchy.

You initialize the data store by specifying a scalar value or an array of values
in the Initial value parameter. The dimensions of the array determine the
dimensionality of the data store. Any data written to the data store must have
the dimensions designated by the Initial value parameter. Otherwise, an error
occurs.

Data Type
Support

A Data Store Memory block stores real or complex signals of any data type
supported by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

A

Data Store
Memory
2-85

Data Store Memory

slref.book Page 86 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Data store name
Specify a name for the data store you are defining with this block. Data
Store Read and Data Store Write blocks with the same name will be able
to read from and write to the data store initialized by this block.

Data store write(W) and read(R) blocks
This parameter lists all the Data Store Read and Data Store Write blocks
that have the same data store name as the current block, and that are in
the current (sub)system or in any subsystem below it in the model
hierarchy. Double-click any entry on this list to highlight the block and
bring it to the foreground.

Initial value
Specify the initial value or values of the data store. The dimensions of this
value determine the dimensions of data that may be written to the data
store.
2-86

Data Store Memory

slref.book Page 87 M onday, Septem ber 27, 2004 3:20 PM
RTW storage class
Specify the RTW storage class of the data store. For more information,
refer to the Real-Time Workshop documentation.

RTW type qualifier
Specify a RTW type qualifier for the data store. This parameter is only
enabled if a value other than auto is selected for the RTW storage class
parameter. For more information, refer to the Real-Time Workshop
documentation.

Interpret vector parameters as 1-D
If selected and the Initial value parameter is specified as a column or row
matrix, the data store is initialized to a 1-D array whose elements are equal
to the elements of the row or column vector.

Characteristics

See Also Data Store Read, Data Store Write

Dimensionalized Yes

Sample Time N/A
2-87

Data Store Read

slref.book Page 88 M onday, Septem ber 27, 2004 3:20 PM
2Data Store ReadPurpose Read data from a data store

Library Signal Routing

Description The Data Store Read block copies data from the named data store to its output.
The data is initialized by a Data Store Memory block and possibly written by a
Data Store Write block.

The data store from which the data is read is determined by the location of the
Data Store Memory block that defines the data store. For more information, see
“Data Store Memory” on page 2-85.

More than one Data Store Read block can read from the same data store.

Note Be careful when setting an execution priority on a Data Store Read
block. Make sure that the block reads from the data store after the store is
updated by any Data Store Write blocks that write to the store in the same
time step.

Data Type
Support

A Data Store Read block can output a real or complex signal of any data type
supported by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

A

Data Store
Read
2-88

Data Store Read

slref.book Page 89 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Data store name
Specify the name of the data store from which this block reads data.

Data store memory block
This field lists the Data Store Memory block that initialized the store from
which this block reads.

Data store write blocks
This parameter lists all the Data Store Write blocks with the same data
store name as this block that are in the same (sub)system or in any
subsystem below it in the model hierarchy. Double-click any entry on this
list to highlight the block and bring it to the foreground.

Sample time
The sample time, which controls when the block reads from the data store.
A value of -1 indicates that the sample time is inherited. See “Specifying
Sample Time” in the online documentation for more information.

Characteristics

See Also Data Store Memory, Data Store Write

Dimensionalized Yes

Sample Time Continuous or discrete
2-89

Data Store Write

slref.book Page 90 M onday, Septem ber 27, 2004 3:20 PM
2Data Store WritePurpose Write data to a data store

Library Signal Routing

Description The Data Store Write block copies the value at its input to the named data
store.

Each write operation performed by a Data Store Write block writes over the
data store, replacing the previous contents.

The data store to which this block writes is determined by the location of the
Data Store Memory block that defines the data store. For more information, see
“Data Store Memory” on page 2-85. The size of the data store is set by the Data
Store Memory block that defines and initializes the data store. Each Data Store
Write block that writes to that data store must write the same amount of data.

More than one Data Store Write block can write to the same data store.
However, if two Data Store Write blocks attempt to write to the same data store
during the same simulation step, results are unpredictable.

Data Type
Support

A Data Store Write block accepts a real or complex signal of any data type
supported by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

A

Data Store
Write
2-90

Data Store Write

slref.book Page 91 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Data store name
Specify the name of the data store to which this block writes data.

Data store memory block
This field lists the Data Store Memory block that initialized the store to
which this block writes.

Data store read blocks
This parameter lists all the Data Store Read blocks with the same data
store name as this block that are in the same (sub)system or in any
subsystem below it in the model hierarchy. Double-click any entry on this
list to highlight the block and bring it to the foreground.

Sample time
Specify the sample time that controls when the block writes to the data
store. A value of -1 indicates that the sample time is inherited. See
“Specifying Sample Time” in the online documentation for more
information.

Characteristics Dimensionalized Yes

Sample Time Continuous or discrete
2-91

Data Store Write

slref.book Page 92 M onday, Septem ber 27, 2004 3:20 PM
See Also Data Store Memory, Data Store Read
2-92

Data Type Conversion

slref.book Page 93 M onday, Septem ber 27, 2004 3:20 PM
2Data Type ConversionPurpose Convert input signal to specified data type

Library Signal Attributes

Description The Data Type Conversion block converts an input signal to the data type
specified by the block’s Data type parameter. The input can be any real- or
complex-valued signal. If the input is real, the output is real. If the input is
complex, the output is complex.

Data Type
Support

The Data Type Support block handles any data type supported by Simulink.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Data type
Specifies the type to which to convert the input signal. The auto option
converts the input signal to the type required by the input port to which the
Data Type Conversion block’s output port is connected.

Saturate on integer overflow
This parameter is enabled only for integer output. If selected, this option
causes the output of the Data Type Conversion block to saturate on integer
overflow. In particular, if the output data type is an integer type, the block
output is the maximum value that can be represented by the output type
or the converted output, whichever is smaller in the absolute sense. If the
option is not selected, Simulink takes the action specified by the Data
overflow event option on the Diagnostics page of the Simulation
Parameters dialog box (see “The Diagnostics Pane” in Using Simulink.).
2-93

Data Type Conversion

slref.book Page 94 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No
2-94

Dead Zone

slref.book Page 95 M onday, Septem ber 27, 2004 3:20 PM
2Dead ZonePurpose Provide a region of zero output

Library Discontinuities

Description The Dead Zone block generates zero output within a specified region, called its
dead zone. The lower and upper limits of the dead zone are specified as the
Start of dead zone and End of dead zone parameters. The block output
depends on the input and dead zone:

• If the input is within the dead zone (greater than the lower limit and less
than the upper limit), the output is zero.

• If the input is greater than or equal to the upper limit, the output is the input
minus the upper limit.

• If the input is less than or equal to the lower limit, the output is the input
minus the lower limit.

This sample model uses lower and upper limits of -0.5 and +0.5, with a sine
wave as input.

This plot shows the effect of the Dead Zone block on the sine wave. While the
input (the sine wave) is between -0.5 and 0.5, the output is zero.

Data Type
Support

A Dead Zone block accepts and outputs a real signal of any data type supported
by Simulink, except boolean.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-95

Dead Zone

slref.book Page 96 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Start of dead zone
The lower limit of the dead zone. The default is -0.5.

End of dead zone
The upper limit of the dead zone. The default is 0.5.

Treat as gain when linearizing
Simulink’s linearization commands treat this block as a gain in state space.
Selecting this option causes the commands to treat the gain as 1; otherwise,
the commands treat the gain as 0.

Enable zero crossing detection
Select to enable zero crossing detection to detect when the limits are
reached. For more information, see “Zero Crossing Detection” in the Using
Simulink documentation.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of parameters

Dimensionalized Yes
2-96

Demux

slref.book Page 97 M onday, Septem ber 27, 2004 3:20 PM
2DemuxPurpose Extract and output the elements of a bus or vector signal

Library Signal Routing

Description The Demux block extracts the components of an input signal and outputs the
components as separate signals. The block accepts either vector (1-D array)
signals or bus signals (see “Signal Buses” in Using Simulink for more
information). The Number of outputs parameter allows you to specify the
number and, optionally, the dimensionality of each output port. If you do not
specify the dimensionality of the outputs, the block determines the
dimensionality of the outputs for you.

The Demux block operates in either vector or bus selection mode, depending on
whether you selected the Bus selection mode parameter. The two modes differ
in the types of signals they accept. Vector mode accepts only a vector-like
signal, that is, either a scalar (one-element array), vector (1-D array), or a
column or row vector (one row or one column 2-D array). Bus selection mode
accepts only the output of a Mux block or another Demux block.

The Demux block’s Number of outputs parameter determines the number and
dimensionality of the block’s outputs, depending on the mode in which the
block operates.

Specifying the Number of Outputs in Vector Mode
In vector mode, the value of the parameter can be a scalar specifying the
number of outputs or a vector whose elements specify the widths of the block’s
output ports. The block determines the size of its outputs from the size of the
input signal and the value of the Number of outputs parameter.
2-97

Demux

slref.book Page 98 M onday, Septem ber 27, 2004 3:20 PM
The following table summarizes how the block determines the outputs for an
input vector of width n.

Parameter Value Block outputs... Comments

p = n p scalar signals For example, if the input is
a three-element vector and
you specify three outputs,
the block outputs three
scalar signals.

p > n Error

p < n
n mod p = 0

p vector signals
each having n/p
elements

If the input is a six-element
vector and you specify three
outputs, the block outputs
three two-element vectors.

p < n
n mod p = m

m vector signals
each having (n/p)+1
elements and p-m
signals having n/p
elements

If the input is a
five-element vector and you
specify three outputs, the
block outputs two
two-element vector signals
and one scalar signal.

[p1 p2 ... pm]
p1+p2+...+pm=n
pi > 0

m vector signals
having widths p1,
p2, ... pm

If the input is a
five-element vector and you
specify [3, 2] as the
output, the block outputs
three of the input elements
on one port and the other
two elements on the other
port.
2-98

Demux

slref.book Page 99 M onday, Septem ber 27, 2004 3:20 PM
Note that you can specify the number of outputs as fewer than the number of
input elements, in which case the block distributes the elements as evenly as
possible over the outputs as illustrated in the following example.

You can use -1 in a vector expression to indicate that the block should
dynamically size the corresponding port. For example, the expression [-1, 3
-1] causes the block to output three signals in which the second signal always
has three elements while the sizes of the first and third signals depend on the
size of the input signal.

If a vector expression comprises positive values and -1 values, the block assigns
as many elements as needed to the ports with positive values and distributes
the remain elements as evenly as possible over the ports with -1 values. For
example, suppose that the block input is seven elements wide and you specify

[p1 p2 ... pm]
p1+p2+...+pm=n
some or all
pi = -1

m vector signals If pi is greater than zero,
the corresponding output
has width pi. If pi is -1, the
width of the corresponding
output is dynamically sized.

[p1 p2 ... pm]
p1+p2+...+pm!=n
pi = > 0

Error

Parameter Value Block outputs... Comments
2-99

Demux

slref.book Page 100 M onday, Septem ber 27, 2004 3:20 PM
the output as [-1, 3 -1]. In this case, the block outputs two elements on the
first port, three elements on the second, and two elements on the third.

Specifying the Number of Outputs in Bus Selection Mode
In bus selection mode, the value of the Number of outputs parameter can be a

• Scalar specifying the number of output ports

The specified value must equal the number of input signals. For example, if
the input bus comprises two signals and the value of this parameter is a
scalar, the value must equal 2.

• Vector each of whose elements specifies the number of signals to output on
the corresponding port

For example, if the input bus contains five signals, you can specify the output
as [3, 2], in which case the block outputs three of the input signals on one
port and the other two signals on a second port.

• Cell array each of whose elements is a cell array of vectors specifying the
dimensions of the signals output by the corresponding port
2-100

Demux

slref.book Page 101 M onday, Septem ber 27, 2004 3:20 PM
The cell array format constrains the Demux block to accept only signals of
specified dimensions. For example, the cell array {{[2 2], 3} {1}} tells the block
to accept only a bus signal comprising a 2-by-2 matrix, a three-element vector,
and a scalar signal. You can use the value -1 in a cell array expression to let the
block determine the dimensionality of a particular output based on the input.
For example, the following diagram uses the cell array expression {{-1}, {-1,-1}}
to specify the output of the leftmost Demux block.

In bus selection mode, if you specify the dimensionality of an output port, i.e.,
if you specify any value other than -1, the corresponding input element must
match the specified dimensionality.

Note Simulink hides the name of a Demux block when you copy it from the
Simulink library to a model.

Data Type
Support

A Demux block accepts and outputs complex or real signals of any data type
supported by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-101

Demux

slref.book Page 102 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Number of outputs
The number and dimensions of outputs.

Bus selection mode
Enable bus selection mode.
2-102

Derivative

slref.book Page 103 M onday, Septem ber 27, 2004 3:20 PM
2DerivativePurpose Output the time derivative of the input

Library Continuous

Description The Derivative block approximates the derivative of its input by computing

where ∆u is the change in input value and ∆t is the change in time since the
previous simulation time step. The block accepts one input and generates one
output. The value of the input signal before the start of the simulation is
assumed to be zero. The initial output for the block is zero.

The accuracy of the results depends on the size of the time steps taken in the
simulation. Smaller steps allow a smoother and more accurate output curve
from this block. Unlike blocks that have continuous states, the solver does not
take smaller steps when the input changes rapidly.

When the input is a discrete signal, the continuous derivative of the input is an
impulse when the value of the input changes, otherwise it is 0. You can obtain
the discrete derivative of a discrete signal using

and taking the z-transform

Using linmod to linearize a model that contains a Derivative block can be
troublesome. For information about how to avoid the problem, see “Linearizing
Models” in Using Simulink.

Data Type
Support

A Derivative block accepts and outputs a real signal of type double.

∆u
∆t

y k() 1
∆t
------ u k() u k 1–()–()=

Y z()
u z()

1 z 1–
–
∆t

z 1–
∆t z⋅
-------------==
2-103

Derivative

slref.book Page 104 M onday, Septem ber 27, 2004 3:20 PM
Dialog Box

Characteristics Direct Feedthrough Yes

Sample Time Continuous

Scalar Expansion N/A

States 0

Dimensionalized Yes

Zero Crossing No
2-104

Digital Clock

slref.book Page 105 M onday, Septem ber 27, 2004 3:20 PM
2Digital ClockPurpose Output simulation time at the specified sampling interval

Library Sources

Description The Digital Clock block outputs the simulation time only at the specified
sampling interval. At other times, the output is held at the previous value.

Use this block rather than the Clock block (which outputs continuous time)
when you need the current time within a discrete system.

Data Type
Support

A Digital Clock block outputs a real signal of type double.

Parameters
and Dialog Box

Sample time
The sampling interval. The default value is 1 second. See “Specifying
Sample Time” in the online documentation for more information.

Characteristics Sample Time Discrete

Scalar Expansion No

Dimensionalized No

Zero Crossing No
2-105

Direct Look-Up Table (n-D)

slref.book Page 106 M onday, Septem ber 27, 2004 3:20 PM
2Direct Look-Up Table (n-D)Purpose Index into an N-dimensional table to retrieve a scalar, vector, or 2-D matrix

Library Look-Up Tables

Description The Direct Look-Up Table (n-D) block uses its block inputs as zero-based
indices into an n-D table. The number of inputs varies with the shape of the
output desired. The output can be a scalar, a vector, or a 2-D matrix. The
lookup table uses zero-based indexing, so integer data types can fully address
their range. For example, a table dimension using the uint8 data type can
address all 256 elements.

You define a set of output values as the Table data parameter. You specify
what the output shape is: a scalar, a vector, or a 2-D matrix. The first input
specifies the zero-based index to the first dimension higher than the number of
dimensions in the output, the second input specifies the index to the next table
dimension, and so on, as shown by this figure:

The figure shows a 5-D table with an output shape set to “2-D Matrix”; the
output is a 2-D Matrix with R rows and C columns.
2-106

Direct Look-Up Table (n-D)

slref.book Page 107 M onday, Septem ber 27, 2004 3:20 PM
This figure shows the set of all the different icons that the Direct Look-Up
Table block shows (depending on the options you choose in the block’s dialog
box).

With dimensions higher than 4, the icon matches the 4-D icons, but shows the
exact number of dimensions in the top text, e.g., “8-D T[k].” The top row of icons
is used when the block output is made from one or more single-element lookups
on the table. The blocks labeled “n-D Direct Table Lookup5,” 6, 8, and 12 are
configured to extract a column from the table, and the two blocks ending in 7
and 9 are extracting a plane from the table. Blocks in the figure ending in 10,
11, and 12 are configured to have the table be an input instead of a parameter.

Example
In this example, the block parameters are defined as

Invalid input value: "Clip and Warn"
Output shape: "Vector"
Table data: int16(a)

where a is a 4-D array of linearly increasing numbers calculated using
MATLAB.
2-107

Direct Look-Up Table (n-D)

slref.book Page 108 M onday, Septem ber 27, 2004 3:20 PM
a = ones(20,4,5,7); L = prod(size(a));
a(1:L) = [1:L]';

The figure shows the block outputting a vector of the 20 values in the second
column of the fourth element of the third dimension from the third element of
the fourth dimension.

Note that the block uses zero-based indexing. The output values in this
example can be calculated manually in MATLAB (which uses 1-based
indexing):

a(:,1+1,1+3,1+2)

ans =

 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
2-108

Direct Look-Up Table (n-D)

slref.book Page 109 M onday, Septem ber 27, 2004 3:20 PM
 1075
 1076
 1077
 1078
 1079
 1080

Data Type
Support

The Direct Look-Up Table (n-D) block accepts mixed-type signals of data type
supported by Simulink. For a discussion on the data types supported by
Simulink, refer to “Data Types Supported by Simulink” in the Using Simulink
documentation.

The output type can differ from the input type and can be any of the types listed
for input; the output type is inherited from the data type of the Table data
parameter.

In the case that the table comes into the block on an input port, the output port
type is inherited from the table input port. Inputs for indexing must be real;
table data can be complex.

Dialog Box

Number of table dimensions
The number of dimensions that the Table data parameter must have. This
determines the number of independent variables for the table and hence the
number of inputs to the block (see descriptions for “Explicit Number of
dimensions” and “Use one (vector) input port instead of N ports,” following).
2-109

Direct Look-Up Table (n-D)

slref.book Page 110 M onday, Septem ber 27, 2004 3:20 PM
Inputs select this object from table
Specify whether the output data is a single element, an n-D column, or a
2-D matrix. The number of ports changes for each selection:

Element — # of ports = # of dimensions

Column — # of ports = # of dimensions - 1

2-D matrix — # of ports = # of dimensions - 2

This numbering agrees with MATLAB’s indexing. For example, if you have
a 4-D table of data, to access a single element you must specify four indices,
as in array(1,2,3,4). To specify a column, you need three indices, as in
array(:,2,3,4). Finally, to specify a 2-D matrix, you only need two
indices, as in array(:,:,3,4).

Make table an input
Selecting this box forces the Direct Look-Up Table (n-D) block to ignore the
Table Data parameter. Instead, a new port appears with “T” next to it. Use
this port to input table data.

Table data
The table of output values. The matrix size must match the dimensions
defined by the N breakpoint set parameter or by the Explicit number
of dimensions parameter when the number of dimensions exceeds four.
During block diagram editing, you can leave the Table data field empty,
but for running the simulation, you must match the number of dimensions
in the Table data to the Number of table dimensions. For information
about how to construct multidimensional arrays in MATLAB, see
Multidimensional Arrays in MATLAB’s online documentation. (This field
appears only if Make table an input is not selected.)

Action for out of range input
None, Warning, Error.

Real-Time Workshop Note: in the generated code, the “Clip and Warn”
and “Clip Index” options cause the Real-Time Workshop to generate
clipping code with no code included to generate warnings. Code generated
for the other option, “Generate Error”, has no clipping code or error
messages at all, on the assumption that simulation during the design
phase of your project should reveal model defects leading to out-of-range
2-110

Direct Look-Up Table (n-D)

slref.book Page 111 M onday, Septem ber 27, 2004 3:20 PM
cases. This assumption helps the code generated by the Real-Time
Workshop to be highly efficient.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion For scalar lookups only (not when returning a column
or a 2-D matrix from the table)

Dimensionalized For scalar lookups only (not when returning a column
or a 2-D matrix from the table)

Zero Crossing No
2-111

Discrete Filter

slref.book Page 112 M onday, Septem ber 27, 2004 3:20 PM
2Discrete FilterPurpose Implement IIR and FIR filters

Library Discrete

Description The Discrete Filter block implements Infinite Impulse Response (IIR) and
Finite Impulse Response (FIR) filters. You specify the coefficients of the
numerator and denominator polynomials in ascending powers of z-1 as vectors
using the Numerator and Denominator parameters. The order of the
denominator must be greater than or equal to the order of the numerator. See
Discrete Transfer Fcn on page 2-124 for more information about coefficients.

The Discrete Filter block represents the method often used by signal processing
engineers, who describe digital filters using polynomials in z-1 (the delay
operator). The Discrete Transfer Fcn block represents the method often used
by control engineers, who represent a discrete system as polynomials in z. The
methods are identical when the numerator and denominator are the same
length. A vector of n elements describes a polynomial of degree n-1.

The block icon displays the numerator and denominator according to how they
are specified. For a discussion of how Simulink displays the icon, see Transfer
Fcn on page 2-368.

Data Type
Support

A Discrete Filter block accepts and outputs a real signal of type double.

Parameters
and Dialog Box

Numerator
The vector of numerator coefficients. The default is [1].
2-112

Discrete Filter

slref.book Page 113 M onday, Septem ber 27, 2004 3:20 PM
Denominator
The vector of denominator coefficients. The default is [1 2].

Sample time
The time interval between samples. See “Specifying Sample Time” in the
online documentation for more information.

Characteristics Direct Feedthrough Only if the lengths of the Numerator and
Denominator parameters are equal

Sample Time Discrete

Scalar Expansion No

States Length of Denominator parameter -1

Dimensionalized No

Zero Crossing No
2-113

Discrete State-Space

slref.book Page 114 M onday, Septem ber 27, 2004 3:20 PM
2Discrete State-SpacePurpose Implement a discrete state-space system

Library Discrete

Description The Discrete State-Space block implements the system described by

where u is the input, x is the state, and y is the output. The matrix coefficients
must have these characteristics, as illustrated in the following diagram:

• A must be an n-by-n matrix, where n is the number of states.

• B must be an n-by-m matrix, where m is the number of inputs.

• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

The block accepts one input and generates one output. The input vector width
is determined by the number of columns in the B and D matrices. The output
vector width is determined by the number of rows in the C and D matrices.

Simulink converts a matrix containing zeros to a sparse matrix for efficient
multiplication.

Data Type
Support

A Discrete State Space block accepts and outputs a real signal of type double.

x n 1+() Ax n() Bu n()+=

y n() Cx n() Du n()+=

A B

C D

n

n

m

r

2-114

Discrete State-Space

slref.book Page 115 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

A, B, C, D
The matrix coefficients, as defined in the preceding equations.

Initial conditions
The initial state vector. The default is 0.

Sample time
The time interval between samples. See “Specifying Sample Time” in the
online documentation for more information.

Characteristics Direct Feedthrough Only if D ≠ 0

Sample Time Discrete

Scalar Expansion Of the initial conditions

States Determined by the size of A

Dimensionalized Yes

Zero Crossing No
2-115

Discrete-Time Integrator

slref.book Page 116 M onday, Septem ber 27, 2004 3:20 PM
2Discrete-Time IntegratorPurpose Perform discrete-time integration of a signal

Library Discrete

Description The Discrete-Time Integrator block can be used in place of the Integrator block
to create a purely discrete system.

The Discrete-Time Integrator block allows you to

• Define initial conditions on the block dialog box or as input to the block.

• Output the block state.

• Define upper and lower limits on the integral.

• Reset the state depending on an additional reset input.

These features are described below.

Integration Methods
The block can integrate using these methods: Forward Euler, Backward Euler,
and Trapezoidal. For a given step k, Simulink updates y(k) and x(k+1). T is
the sampling period (delta T in the case of triggered sampling time). Values are
clipped according to upper or lower limits. In all cases, y(0)=x(0)=IC (clipped
if necessary), i.e., the initial output of the block is always the initial condition.

• Forward Euler method (the default), also known as Forward Rectangular, or
left-hand approximation.

For this method, 1/s is approximated by T/(z–1). The resulting expression
for the output of the block at step k is
y(k) = y(k–1) + T * u(k–1)

Let x(k+1) = x(k) + T*u(k). The block uses the following steps to compute
its output:
Step 0: y(0) = x(0) = IC (clip if necessary)

x(1) = y(0) + T*u(0)

Step 1: y(1) = x(1)
x(2) = x(1) + T*u(1)

Step k: y(k) = x(k)
2-116

Discrete-Time Integrator

slref.book Page 117 M onday, Septem ber 27, 2004 3:20 PM
x(k+1) = x(k) + T*u(k) (clip if necessary)

With this method, input port 1 does not have direct feedthrough.

• Backward Euler method, also known as Backward Rectangular or
right-hand approximation.

For this method, 1/s is approximated by T*z/(z–1). The resulting expression
for the output of the block at step k is
y(k) = y(k 1) + T * u(k)

Let x(k) = y(k 1). The block uses the following steps to compute its output:
Step 0: y(0) = x(0) = IC (clipped if necessary)

x(1) = y(0)

Step 1: y(1) = x(1) + T*u(1)
x(2) = y(1)

Step k: y(k) = x(k) + T*u(k)
x(k+1) = y(k)

With this method, input port 1 has direct feedthrough.

• Trapezoidal method. For this method, 1/s is approximated by

T/2*(z+1)/(z 1)

When T is fixed (equal to the sampling period), let
x(k) = y(k 1) + T/2 * u(k 1)

The block uses the following steps to compute its output:
Step 0: y(0) = x(0) = IC (clipped if necessary)

x(1) = y(0) + T/2 * u(0)

Step 1: y(1) = x(1) + T/2 * u(1)
x(2) = y(1) + T/2 * u(1)

Step k: y(k) = x(k) + T/2 * u(k)
x(k+1) = y(k) + T/2 * u(k)
2-117

Discrete-Time Integrator

slref.book Page 118 M onday, Septem ber 27, 2004 3:20 PM
Here, x(k+1) is the best estimate of the next output. It isn’t quite the state,
in the sense that x(k) != y(k).

If T is variable (i.e. obtained from the triggering times), the block uses the
following algorithm to compute its outputs:
Step 0: y(0) = x(0) = IC (clipped if necessary)

x(1) = y(0)

Step 1: x(1) = x(1) + T/2 * (u(1) + u(0))
x(2) = y(1)

Step k: y(k) = x(k) + T/2 * (u(k) + u(k-1))
x(k+1) = y(k)

With this method, input port 1 has direct feedthrough.

The block icon reflects the selected integration method, as this figure shows.

Defining Initial Conditions
You can define the initial conditions as a parameter on the block dialog box or
input them from an external signal:

• To define the initial conditions as a block parameter, specify the Initial
condition source parameter as internal and enter the value in the Initial
condition parameter field.

• To provide the initial conditions from an external source, specify the Initial
condition source parameter as external. An additional input port appears
under the block input, as shown in this figure.
2-118

Discrete-Time Integrator

slref.book Page 119 M onday, Septem ber 27, 2004 3:20 PM
Using the State Port
In two situations, you must use the state port instead of the output port:

• When the output of the block is fed back into the block through the reset port
or the initial condition port, causing an algebraic loop. For an example of this
situation, see the bounce model.

• When you want to pass the state from one conditionally executed subsystem
to another, which can cause timing problems. For an example of this
situation, see the clutch model.

You can correct these problems by passing the state through the state port
rather than the output port. Although the values are the same, Simulink
generates them at slightly different times, which protects your model from
these problems. You output the block state by selecting the Show state port
check box.

By default, the state port appears on the top of the block, as shown in this
figure.

Limiting the Integral
To prevent the output from exceeding specifiable levels, select the Limit
output check box and enter the limits in the appropriate parameter fields.
Doing so causes the block to function as a limited integrator. When the output
reaches the limits, the integral action is turned off to prevent integral wind up.
During a simulation, you can change the limits but you cannot change whether
the output is limited. The output is determined as follows:

• When the integral is less than or equal to the Lower saturation limit and
the input is negative, the output is held at the Lower saturation limit.

• When the integral is between the Lower saturation limit and the Upper
saturation limit, the output is the integral.

• When the integral is greater than or equal to the Upper saturation limit
and the input is positive, the output is held at the Upper saturation limit.
2-119

Discrete-Time Integrator

slref.book Page 120 M onday, Septem ber 27, 2004 3:20 PM
To generate a signal that indicates when the state is being limited, select the
Show saturation port check box. A saturation port appears below the block
output port, as shown in this figure.

The signal has one of three values:

• 1 indicates that the upper limit is being applied.

• 0 indicates that the integral is not limited.

• -1 indicates that the lower limit is being applied.

When the Limit output option is selected, the block has three zero crossings:
one to detect when it enters the upper saturation limit, one to detect when it
enters the lower saturation limit, and one to detect when it leaves saturation.

Resetting the State
The block can reset its state to the specified initial condition, based on an
external signal. To cause the block to reset its state, select one of the External
reset choices. A trigger port appears below the block’s input port and indicates
the trigger type, as shown in this figure.

• Select rising to trigger the state reset when the reset signal has a rising
edge.

• Select falling to trigger the state reset when the reset signal has a falling
edge.

• Select either to trigger the reset when either a rising or falling signal
occurs.

• Select level to trigger the reset and hold the output to the initial condition
while the reset signal is nonzero.
2-120

Discrete-Time Integrator

slref.book Page 121 M onday, Septem ber 27, 2004 3:20 PM
The reset port has direct feedthrough. If the block output is fed back into this
port, either directly or through a series of blocks with direct feedthrough, an
algebraic loop results. To resolve this loop, feed the output of the block’s state
port into the reset port instead. To access the block’s state, select the Show
state port check box.

Choosing All Options
When all options are selected, the icon looks like this.

Data Type
Support

A Discrete-Time Integrator block accepts and outputs real signals of type
double.

Parameters
and Dialog Box

Integrator method
The integration method. The default is ForwardEuler.
2-121

Discrete-Time Integrator

slref.book Page 122 M onday, Septem ber 27, 2004 3:20 PM
External reset
Resets the states to their initial conditions when a trigger event (rising,
falling, either, level) occurs in the reset signal.

Initial condition source
Gets the states’ initial conditions from the Initial condition parameter (if
set to internal) or from an external block (if set to external).

Initial condition
The states’ initial conditions. Set the Initial condition source parameter
value to internal.

Limit output
If selected, limits the block’s output to a value between the Lower
saturation limit and Upper saturation limit parameters.

Upper saturation limit
The upper limit for the integral. The default is inf.

Lower saturation limit
The lower limit for the integral. The default is -inf.

Show saturation port
If selected, adds a saturation output port to the block.

Show state port
If selected, adds an output port to the block for the block’s state.

Sample time
The time interval between samples. The default is 1. See “Specifying
Sample Time” in the online documentation for more information.

Characteristics Direct Feedthrough Yes, of the reset and external initial condition source
ports

Sample Time Discrete

Scalar Expansion Of parameters

States Inherited from driving block and parameter
2-122

Discrete-Time Integrator

slref.book Page 123 M onday, Septem ber 27, 2004 3:20 PM
Dimensionalized Yes

Zero Crossing One for detecting reset, one each to detect upper and
lower saturation limits, one when leaving saturation
2-123

Discrete Transfer Fcn

slref.book Page 124 M onday, Septem ber 27, 2004 3:20 PM
2Discrete Transfer FcnPurpose Implement a discrete transfer function

Library Discrete

Description The Discrete Transfer Fcn block implements the z-transform transfer function
described by the following equations:

where m+1 and n+1 are the number of numerator and denominator
coefficients, respectively. num and den contain the coefficients of the
numerator and denominator in descending powers of z. num can be a vector or
matrix, den must be a vector, and both are specified as parameters on the block
dialog box. The order of the denominator must be greater than or equal to the
order of the numerator.

Block input is scalar; output width is equal to the number of rows in the
numerator.

The Discrete Transfer Fcn block represents the method typically used by
control engineers, representing discrete systems as polynomials in z. The
Discrete Filter block represents the method typically used by signal processing
engineers, who describe digital filters using polynomials in z-1 (the delay
operator). The two methods are identical when the numerator is the same
length as the denominator.

The Discrete Transfer Fcn block displays the numerator and denominator
within its icon depending on how they are specified. See Transfer Fcn on page
2-368 for more information.

Data Type
Support

A Discrete Transfer Function block accepts and outputs real signals of type
double.

H z() num z()
den z()

num0zn num1zn 1– … nummzn m–
+ + +

den0zn den1zn 1– … denn+ + +
--= =
2-124

Discrete Transfer Fcn

slref.book Page 125 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Numerator
The row vector of numerator coefficients. A matrix with multiple rows can
be specified to generate multiple output. The default is [1].

Denominator
The row vector of denominator coefficients. The default is [1 0.5].

Sample time
The time interval between samples. The default is 1. See “Specifying
Sample Time” in the online documentation for more information.

Characteristics Direct Feedthrough Only if the lengths of the Numerator and
Denominator parameters are equal

Sample Time Discrete

Scalar Expansion No

States Length of Denominator parameter -1

Dimensionalized No

Zero Crossing No
2-125

Discrete Zero-Pole

slref.book Page 126 M onday, Septem ber 27, 2004 3:20 PM
2Discrete Zero-PolePurpose Implement a discrete transfer function specified in terms of poles and zeros

Library Discrete

Description The Discrete Zero-Pole block implements a discrete system with the specified
zeros, poles, and gain in terms of the delay operator z. A transfer function can
be expressed in factored or zero-pole-gain form, which, for a single-input,
single-output system in MATLAB, is

where Z represents the zeros vector, P the poles vector, and K the gain. The
number of poles must be greater than or equal to the number of zeros
(n ≥ m). If the poles and zeros are complex, they must be complex conjugate
pairs.

The block icon displays the transfer function depending on how the parameters
are specified. See Zero-Pole on page 2-399 for more information.

Data Type
Support

A Discrete Zero-Pole block accepts and outputs real signals of type double.

Parameters
and Dialog Box

Zeros
The matrix of zeros. The default is [1].

H z() KZ z()
P z()
----------- K

z Z1–() z Z2–()… z Zm–()
z P1–() z P2–()… z Pn–()
--= =
2-126

Discrete Zero-Pole

slref.book Page 127 M onday, Septem ber 27, 2004 3:20 PM
Poles
The vector of poles. The default is [0 0.5].

Gain
The gain. The default is 1.

Sample time
The time interval between samples. See “Specifying Sample Time” in the
online documentation for more information.

Characteristics Direct Feedthrough Yes, if the number of zeros and poles are equal

Sample Time Discrete

Scalar Expansion No

States Length of Poles vector

Dimensionalized No

Zero Crossing No
2-127

Display

slref.book Page 128 M onday, Septem ber 27, 2004 3:20 PM
2DisplayPurpose Show the value of the input

Library Sinks

Description The Display block shows the value of its input.

You can control the display format by selecting a Format choice:

• short, which displays a 5-digit scaled value with fixed decimal point

• long, which displays a 15-digit scaled value with fixed decimal point

• short_e, which displays a 5-digit value with a floating decimal point

• long_e, which displays a 16-digit value with a floating decimal point

• bank, which displays a value in fixed dollars and cents format (but with no $
or commas)

To use the block as a floating display, select the Floating display check box.
The block’s input port disappears and the block displays the value of the signal
on a selected line. If you select the Floating display option, you must turn off
Simulink’s signal storage reuse feature. See “Signal storage reuse” in Using
Simulink for more information.

The amount of data displayed and the time steps at which the data is displayed
are determined by block parameters:

• The Decimation parameter enables you to display data at every nth sample,
where n is the decimation factor. The default decimation, 1, displays data at
every time step.

• The Sample time parameter enables you to specify a sampling interval at
which to display points. This parameter is useful when you are using a
variable-step solver where the interval between time steps might not be the
same. The default value of -1 causes the block to ignore the sampling
interval when determining the points to display.

If the block input is an array, you can resize the block to show more than just
the first element. You can resize the block vertically or horizontally; the block
adds display fields in the appropriate direction. A black triangle indicates that
the block is not displaying all input array elements. For example, the following
figure shows a model that passes a vector (1-D array) to a Display block. The
2-128

Display

slref.book Page 129 M onday, Septem ber 27, 2004 3:20 PM
top model shows the block before it is resized; notice the black triangle. The
bottom model shows the resized block displaying both input elements.

Data Type
Support

A Display block accepts and outputs real or complex signals of any data type
supported by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Format
The format of the data displayed. The default is short.

Decimation
How often to display data. The default value, 1, displays every input point.

Floating display
If selected, the block’s input port disappears, which enables the block to be
used as a floating Display block.

Displays only one elem ent
of input vector but indicates

Displays both elem ents
of input vector

there are m ore
2-129

Display

slref.book Page 130 M onday, Septem ber 27, 2004 3:20 PM
Sample time
The sample time at which to display points. See “Specifying Sample Time”
in the online documentation for more information.

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes
2-130

DocBlock

slref.book Page 131 M onday, Septem ber 27, 2004 3:20 PM
2DocBlockPurpose Create text that documents the model and save the text with the model

Library Model-Wide Utilities

Description The DocBlock allows you to create and edit text that documents a model and
save that text with the model. Double-clicking an instance of this block creates
a temporary file containing the text associated with this block and opens the
file in the text editor that you have selected in the MATLAB Preferences
dialog box. Use the text editor to modify the text and save the file. Simulink
stores the contents of the saved file in the model file.

Data Type
Support

Not applicable.

Dialog Box The DocBlock does not have a parameter dialog box.

Characteristics Not applicable
2-131

Dot Product

slref.book Page 132 M onday, Septem ber 27, 2004 3:20 PM
2Dot ProductPurpose Generate the dot product

Library Math Operations

Description The Dot Product block generates the dot product of its two input vectors. The
scalar output, y, is equal to the MATLAB operation

y = sum(conj(u1) .* u2)

where u1 and u2 represent the vector inputs. If both inputs are vectors, they
must be the same length. The elements of the input vectors can be real- or
complex-valued signals of data type double. The signal type (complex or real)
of the output depends on the signal types of the inputs.

To perform element-by-element multiplication without summing, use the
Product block.

Data Type
Support

A Dot Product block accepts and outputs signals of type double.

Dialog Box

Input 1 Input 2 Output

real real real

real complex complex

complex real complex

complex complex complex
2-132

Dot Product

slref.book Page 133 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

States 0

Dimensionalized Yes

Zero Crossing No
2-133

Enable

slref.book Page 134 M onday, Septem ber 27, 2004 3:20 PM
2EnablePurpose Add an enabling port to a subsystem

Library Ports & Subsystems

Description Adding an Enable block to a subsystem makes it an enabled subsystem. An
enabled subsystem executes while the input received at the Enable port is
greater than zero.

At the start of simulation, Simulink initializes the states of blocks inside an
enabled subsystem to their initial conditions. When an enabled subsystem
restarts (executes after having been disabled), the States when enabling
parameter determines what happens to the states of blocks contained in the
enabled subsystem:

• reset resets the states to their initial conditions (zero if not defined).

• held holds the states at their previous values.

You can output the enabling signal by selecting the Show output port check
box. Selecting this option allows the system to process the enabling signal.

A subsystem can contain no more than one Enable block.

Data Type
Support

The data type of the input of the Enable port can be any data type supported
by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

See “Creating Conditionally Executed Subsystems” in the online Simulink help
for more information about enabled subsystems.

Parameters
and Dialog Box
2-134

Enable

slref.book Page 135 M onday, Septem ber 27, 2004 3:20 PM
States when enabling
Specifies how to handle internal states when the subsystem becomes
reenabled.

Show output port
If selected, Simulink draws the Enable block output port and outputs the
enabling signal.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Characteristics Sample Time Determined by the signal at the enable port

Dimensionalized Yes
2-135

Enabled and Triggered Subsystem

slref.book Page 136 M onday, Septem ber 27, 2004 3:20 PM
2Enabled and Triggered SubsystemPurpose Represent a subsystem whose execution is enabled and triggered by external
input

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as the starting
point for creating an enabled and triggered subsystem. For more information,
see “Triggered and Enabled Subsystem” in the online Simulink help.
2-136

Enabled Subsystem

slref.book Page 137 M onday, Septem ber 27, 2004 3:20 PM
2Enabled SubsystemPurpose Represent a subsystem whose execution is enabled by external input

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as the starting
point for creating an enabled subsystem. For more information, see “Enabled
Subsystems” in Using Simulink.
2-137

Fcn

slref.book Page 138 M onday, Septem ber 27, 2004 3:20 PM
2FcnPurpose Apply a specified expression to the input

Library User-Defined Functions

Description The Fcn block applies the specified C language style expression to its input.
The expression can be made up of one or more of these components:

• u — The input to the block. If u is a vector, u(i) represents the ith element
of the vector; u(1) or u alone represents the first element.

• Numeric constants

• Arithmetic operators (+ – * /)

• Relational operators (== != > < >= <=) — The expression returns 1 if the
relation is true; otherwise, it returns 0.

• Logical operators (&& || !) — The expression returns 1 if the relation is true;
otherwise, it returns 0.

• Parentheses

• Mathematical functions — abs, acos, asin, atan, atan2, ceil, cos, cosh, exp,
fabs, floor, hypot, ln, log, log10, pow, power, rem, sgn, sin, sinh, sqrt, tan,
and tanh.

• Workspace variables — Variable names that are not recognized in the
preceding list of items are passed to MATLAB for evaluation. Matrix or
vector elements must be specifically referenced (e.g., A(1,1) instead of A for
the first element in the matrix).

The rules of precedence obey the C language standards:

1 ()

2 + (unary)

3 pow (exponentiation)
4 !

5 * /

6 +

7 > < <= >=

8 = !=

9 &&

10 ||
2-138

Fcn

slref.book Page 139 M onday, Septem ber 27, 2004 3:20 PM
The expression differs from a MATLAB expression in that the expression
cannot perform matrix computations. Also, this block does not support the
colon operator (:).

Block input can be a scalar or vector. The output is always a scalar. For vector
output, consider using the Math Function block. If a block is a vector and the
function operates on input elements individually (for example, the sin
function), the block operates on only the first vector element.

Note Simulink does not allow you to change the value of the block’s
Expression parameter while running a model in accelerated mode (see “The
Simulink Accelerator”). Furthermore, Simulink does not update the value of
the Fcn expression to reflect changes in the workspace while running in
accelerated mode.

Data Type
Support

A Fcn block accepts and outputs signals of type double.

Parameters
and Dialog Box

Expression
The C language style expression applied to the input. Expression
components are listed above. The expression must be mathematically well
formed (i.e., matched parentheses, proper number of function arguments,
etc.).
2-139

Fcn

slref.book Page 140 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized No

Zero Crossing No
2-140

First-Order Hold

slref.book Page 141 M onday, Septem ber 27, 2004 3:20 PM
2First-Order HoldPurpose Implement a first-order sample-and-hold

Library Discrete

Description The First-Order Hold block implements a first-order sample-and-hold that
operates at the specified sampling interval. This block has little value in
practical applications and is included primarily for academic purposes.

You can see the difference between the Zero-Order Hold and First-Order Hold
blocks by running the demo program fohdemo. This figure compares the output
from a Sine Wave block and a First-Order Hold block.

Data Type
Support

A First-Order Hold block accepts and outputs signals of type double.

Parameters
and Dialog Box

Sample time
The time interval between samples. See “Specifying Sample Time” in the
online documentation for more information.
2-141

First-Order Hold

slref.book Page 142 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough No

Sample Time Continuous

Scalar Expansion No

States 1 continuous and 1 discrete per input element

Dimensionalized Yes

Zero Crossing No
2-142

For Iterator

slref.book Page 143 M onday, Septem ber 27, 2004 3:20 PM
2For IteratorPurpose Repeatedly execute the contents of a subsystem at the current time step until
an iteration variable exceeds a specified iteration limit.

Library Ports & Subsystems/For Subsystem

Description The For Iterator block, when placed in a subsystem, repeatedly executes the
contents of the subsystem at the current time step until an iteration variable
exceeds a specified iteration limit. You can use this block to implement the
block diagram equivalent of a for loop in the C programming language.

The block’s parameter dialog allows you to specify the maximum value of the
iteration variable or an external source for the maximum value and an optional
external source for the next value of the iteration variable. If you do not specify
an external source for the next value of the iteration variable, the next value is
determined by incrementing the current value:

in+1 = in +1

The model in the follwing figure uses a For Iterator block to increment an
initial value of zero by 10 over 20 iterations at every time step.
2-143

For Iterator

slref.book Page 144 M onday, Septem ber 27, 2004 3:20 PM
The following figure shows the result.

The For Iterator subsystem in this example is equivalent to the following C
code.

sum = 0;
iterations = 20;
sum_increment = 10;
for (i = 0; i < iterations; i++) {

sum = sum + sum_increment;
}

Note Placing a For Iterator block in a subsystem makes it an atomic
subsystem if it is not already an atomic subsystem.

Data Type
Support

The following rules apply to the data type of the number of iterations (N) input
port:

• The input port accepts data of mixed types.

• If the input port value is noninteger, it is first truncated to an integer.

• Internally, the input value is cast to an integer of the type specified for the
iteration variable output port.

Points:
(1,10)
(2,20)
etc.
2-144

For Iterator

slref.book Page 145 M onday, Septem ber 27, 2004 3:20 PM
• If no output port is specified, the input port value is cast to type int32.

• If the input port value exceeds the maximum value of the output port’s type,
it is truncated to that maximum value.

Data output for the iterator value can be selected as double, int32, int16, or
int8 in the Block Properties dialog.

The following rules apply to the iteration variable input port.

• It can appear only if the iteration variable output port is enabled.

• The data type of the iteration variable input port is the same as the data type
of the iteration variable output port.

Parameters
and Dialog Box

States when starting
Set this field to reset if you want the states of the For subsystem to be
reinitialized before the first iteration at each time step. Otherwise, set this
field to held (the default) to make sure that these subsystem states retain
their values from the last iteration at the previous time step.

Iteration limit source
If you set this field to internal, the value of the Number of iterations field
determines the number of iterations. If you set this field to external, the
2-145

For Iterator

slref.book Page 146 M onday, Septem ber 27, 2004 3:20 PM
signal at the For Iterator block’s N port determines the number of
iterations. The iteration limit source must reside outside the For Iterator
subsystem.

Iteration limit
Set the number of iterations for the For Iterator block to this value. This
field appears only if you selected internal for the Source of number of
iterations field.

Set next i
(iteration
variable)
externally

Set next i (iteration variable) externally
This option can be selected only if the Show iteration variable option is
selected. If this option is selected, the For Iterator block displays an
additional input for connecting an external input variable source. The
value of the input at the current iteration is used as the value of the
iteration variable at the next iteration.

Show iteration variable
If this is selected, the For Iterator block outputs its iteration value.

Output data type
Set the type for the iteration value output from the iteration number port
to double, int32, int16, or int8.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving blocks

Scalar Expansion No

Dimensionalized No

Zero Crossing No
2-146

For Iterator Subsystem

slref.book Page 147 M onday, Septem ber 27, 2004 3:20 PM
2For Iterator SubsystemPurpose Represent a subsystem that executes repeatedly during a simulation time step

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as a starting
point for creating a subsystem that executes repeatedly during a simulation
time step. For more information, see the For Iterator block and “Control Flow
Blocks” in Using Simulink.
2-147

From

slref.book Page 148 M onday, Septem ber 27, 2004 3:20 PM
2FromPurpose Accept input from a Goto block

Library Signal Routing

Description The From block accepts a signal from a corresponding Goto block, then passes
it as output. The data type of the output is the same as that of the input from
the Goto block. From and Goto blocks allow you to pass a signal from one block
to another without actually connecting them. To associate a Goto block with a
From block, enter the Goto block’s tag in the Goto tag parameter.

A From block can receive its signal from only one Goto block, although a Goto
block can pass its signal to more than one From block.

This figure shows that using a Goto block and a From block is equivalent to
connecting the blocks to which those blocks are connected. In the model at the
left, Block1 passes a signal to Block2. That model is equivalent to the model at
the right, which connects Block1 to the Goto block, passes that signal to the
From block, then on to Block2.

Associated Goto and From blocks can appear anywhere in a model, with this
exception: if either block is in a conditionally executed subsystem, the other
block must be either in the same subsystem or in a subsystem below it in the
model hierarchy (but not in another conditionally executed subsystem).
However, if a Goto block is connected to a state port, the signal can be sent to
a From block inside another conditionally executed subsystem. For more
information about conditionally executed subsystems, see “Creating
Conditionally Executed Subsystems” in Using Simulink.

The visibility of a Goto block tag determines the From blocks that can receive
its signal. For more information, see Goto on page 2-166 and Goto Tag
Visibility on page 2-169. The block icon indicates the visibility of the Goto
block tag:

• A local tag name is enclosed in brackets ([]).

• A scoped tag name is enclosed in braces ({}).

• A global tag name appears without additional characters.

Block1 Block2 Block1 Block2Goto From

A A
2-148

From

slref.book Page 149 M onday, Septem ber 27, 2004 3:20 PM
Data Type
Support

A From block outputs real or complex signals of any data type supported by
Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Goto tag
The tag of the Goto block passing the signal to this From block.

Goto source
Path of the Goto block connected to this From block. Double-clicking the
path displays and highlights the Goto block.

Characteristics Sample Time Inherited from block driving the Goto block

Dimensionalized Yes
2-149

From File

slref.book Page 150 M onday, Septem ber 27, 2004 3:20 PM
2From FilePurpose Read data from a file

Library Sources

Description The From File block outputs data read from a file. The block icon displays the
pathname of the file supplying the data.

The file must contain a matrix of two or more rows. The first row must contain
monotonically increasing time points. Other rows contain data points that
correspond to the time point in that column. The matrix is expected to have this
form.

The width of the output depends on the number of rows in the file. The block
uses the time data to determine its output, but does not output the time values.
This means that in a matrix containing m rows, the block outputs a vector of
length m–1, consisting of data from all but the first row of the appropriate
column.

If an output value is needed at a time that falls between two values in the file,
the value is linearly interpolated between the appropriate values. If the
required time is less than the first time value or greater than the last time
value in the file, Simulink extrapolates, using the first two or last two points to
compute a value.

If the matrix includes two or more columns at the same time value, the output
is the data point for the first column encountered. For example, for a matrix
that has this data:

time values: 0 1 2 2
data points: 2 3 4 5

At time 2, the output is 4, the data point for the first column encountered at
that time value.

t1 t2 …tfinal

u11 u12 …u1final

…
un1 un2 …unfinal
2-150

From File

slref.book Page 151 M onday, Septem ber 27, 2004 3:20 PM
Simulink reads the file into memory at the start of the simulation. As a result,
you cannot read data from the same file named in a To File block in the same
model.

Using Data Saved by a To File or a To Workspace Block
The From File block can read data written by a To File block without any
modifications. To read data written by a To Workspace block and saved to a file:

• The data must include the simulation times. The easiest way to include time
data in the simulation output is to specify a variable for time on the
Workspace I/O page of the Simulation Parameters dialog box. See “The
WorkspaceF I/O Pane” for more information.

• The form of the data as it is written to the workspace is different from the
form expected by the From File block. Before saving the data to a file,
transpose it. When it is read by the From File block, it will be in the correct
form.

Data Type
Support

A From File block outputs real signals of type double.

Parameters
and Dialog Box

File name
The fully qualified pathname or file name of the file that contains the data
used as input. On UNIX, the pathname can start with a tilde (~) character
signifying your home directory. The default file name is untitled.mat. If
you specify an unqualified file name, Simulink assumes that the file
resides in MATLAB’s working directory. (To determine the working
directory, enter pwd at the MATLAB command line.) If Simulink cannot
2-151

From File

slref.book Page 152 M onday, Septem ber 27, 2004 3:20 PM
find the specified file name in the working directory, it displays an error
message.

Sample time
The sample period and offset of the data read from the file. See “Specifying
Sample Time” in the online documentation for more information.

Characteristics Sample Time Inherited from driven block

Scalar Expansion No

Dimensionalized 1-D array only

Zero Crossing No
2-152

From Workspace

slref.book Page 153 M onday, Septem ber 27, 2004 3:20 PM
2From WorkspacePurpose Read data from the workspace

Library Sources

Description The From Workspace block reads data from the MATLAB workspace. The
block’s Data parameter specifies the workspace data via a MATLAB expression
that evaluates to a matrix (2-D array) or a structure containing an array of
signal values and time steps. The format of the matrix or structure is the same
as that used to load inport data from the workspace (see “Loading Input from
the Base Workspace”). The From Workspace icon displays the expression in the
Data parameter.

Note You must use the structure-with-time format to load matrix (2-D) data
from the workspace. You can use either the array or the structure format to
load scalar or vector (1-D) data.

The From Workspace block’s Interpolate data parameter determines the
block’s output in the time interval for which workspace data is supplied. If the
Interpolate data option is selected, the block interpolates between data values
for time steps that occur between the times for which data is supplied from the
workspace. Otherwise, the block uses the most recent data value supplied from
the workspace.

The block’s Form output after final data value by parameter determines the
block’s output after the last time step for which data is available from the
workspace. The following table summarizes the output block based on the
options that the parameter provides.

Form
Output Option

Interpolate
Option Block Output After Final Data

Extrapolate On Extrapolated from final data value

Extrapolate Off Error

SettingToZero On Zero

SettingToZero Off Zero
2-153

From Workspace

slref.book Page 154 M onday, Septem ber 27, 2004 3:20 PM
If the input array contains more than one entry for the same time step,
Simulink uses the signals specified by the last entry. For example, suppose the
input array has this data:

time: 0 1 2 2
signal: 2 3 4 5

At time 2, the output is 5, the signal value for the last entry for time 2.

Note A From Workspace block can directly read the output of a To
Workspace block (see To Workspace on page 2-364) if the output is in
structure-with-time format (see “Loading Input from the Base Workspace” for
a description of these formats).

Data Type
Support

A From Workspace block accepts real or complex signals of any type supported
by Simulink. Real signals of type double can be in either structure or matrix
format. Complex signals and real signals of any type other than double must
be in structure format.

HoldingFinalValue On Final value from workspace

HoldingFinalValue Off Final value from workspace

CyclicRepetition On Error

CyclicRepetition Off Repeated from workspace. This
option is valid only for workspace
data in structure-without-time
format.

Form
Output Option

Interpolate
Option Block Output After Final Data
2-154

From Workspace

slref.book Page 155 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Data
An expression that evaluates to an array or a structure containing an array
of simulation times and corresponding signal values. For example, suppose
that the workspace contains a column vector of times named T and a vector
of corresponding signal values named U. Entering the expression [T,U] for
this parameter yields the required input array. If the required
signal-versus-time array or structure already exists in the workspace,
enter the name of the structure or matrix in this field.

Sample time
Sample rate of data from the workspace. See “Specifying Sample Time” in
the online documentation for more information.

Interpolate data
This option causes the block to linearly interpolate at time steps for which
no corresponding workspace data exists. Otherwise, the current output
equals the output at the most recent time for which data exists.

Form output after final data value by
Select method for generating output after the last time point for which data
is available from the workspace.
2-155

From Workspace

slref.book Page 156 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Sample Time Inherited from driven block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-156

Function-Call Generator

slref.book Page 157 M onday, Septem ber 27, 2004 3:20 PM
2Function-Call GeneratorPurpose Execute a function-call subsystem a specified number of times at a specified
rate

Library Ports & Subsystems

Description The Function-Call Generator block executes a function-call subsystem (for
example, a Stateflow state chart configured as a function-call system) at the
rate specified by the block’s Sample time parameter. To execute multiple
function-call subsystems in a prescribed order, first connect a Function-Call
Generator block to a Demux block that has as many output ports as there are
function-call subsystems to be controlled. Then connect the outports of the
Demux block to the systems to be controlled. The system connected to the first
demux port executes first, the system connected to the second demux port
executes second, and so on.

Data Type
Support

A Function-Call Generator block outputs a real signal of type double.

Parameters
and Dialog Box

Sample time
The time interval between samples. See “Specifying Sample Time” in the
online documentation for more information.

Number of iterations
Number of times to execute the block per time step.
2-157

Function-Call Generator

slref.book Page 158 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough No

Sample Time User-specified

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-158

Function-Call Subsystem

slref.book Page 159 M onday, Septem ber 27, 2004 3:20 PM
2Function-Call SubsystemPurpose Represent a subsystem that can be invoked as a function by another block

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as a starting
point for creating a function-call subsystem. For more information, see
“Function-Call Subsystems” in Using Simulink.
2-159

Gain, Matrix Gain

slref.book Page 160 M onday, Septem ber 27, 2004 3:20 PM
2Gain, Matrix GainPurpose Multiply the input by a constant

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Gain block multiplies the input by a constant value (gain). The input and
the gain can each be a scalar, vector, or matrix.

You specify the value of the gain in the Gain parameter. The Multiplication
parameter lets you specify element-wise or matrix multiplication. For matrix
multiplication, this parameter also lets you indicate the order of the
multiplicands.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” in the Fixed-Point
Blockset documentation.

The Matrix gain block is an implementation of the Gain block with different
default settings.

Data Type
Support

The Gain block accepts a real or complex scalar, vector, or matrix of any data
type supported by Simulink except boolean. The Gain block also accepts
fixed-point data types. If the input of the Gain block is real and the gain is
complex, the output is complex.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

1

Gain

K*u

Matrix
Gain
2-160

Gain, Matrix Gain

slref.book Page 161 M onday, Septem ber 27, 2004 3:20 PM
Gain
Specify the value by which to multiply the input. The gain may be a scalar,
vector, or matrix. The gain may not be boolean.

Multiplication
Specify the multiplication mode:

• Element-wise(K*u)—Each element of the input is multiplied by each
element of the gain. The block performs expansions, if necessary, so that the
input and gain have the same dimensions.

• Matrix(K*u)—The input and gain are matrix multiplied with the input as
the second operand.

• Matrix(u*K)—The input and gain are matrix multiplied with the input as
the first operand.

• Matrix(K*u)(u vector)—The input and gain are matrix multiplied with the
input as the second operand. The input and the output are required to be
vectors and their lengths are determined by the dimensions of the gain.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
2-161

Gain, Matrix Gain

slref.book Page 162 M onday, Septem ber 27, 2004 3:20 PM
Parameter data type mode
Set the data type and scaling of the gain to be the same as that of the input,
or to be inherited via an internal rule. Alternatively, choose to specify the
data type and scaling of the gain through the Parameter data type,
Parameter scaling mode, and Parameter scaling parameters in the
dialog.

Parameter data type
Set the gain data type. This parameter is only visible if Specify via
dialog is selected for the Parameter data type mode parameter.
2-162

Gain, Matrix Gain

slref.book Page 163 M onday, Septem ber 27, 2004 3:20 PM
Parameter scaling mode
Set the mode to determine the scaling of the gain.

• Use specified scaling—This mode allows you to set the scaling of the gain
in the Parameter scaling parameter.

• Best Precision: Element-wise—This mode sets binary points for the
elements of the gain such that the precision of each element is maximized.

• Best Precision: Row-wise—This mode sets a common binary point within
each row of the gain such that the largest element of each row has the best
possible precision.

• Best Precision: Column-wise—This mode sets a common binary point
within each column of the gain such that the largest element of each column
has the best possible precision.

• Best Precision: Matrix-wise—This mode sets a common binary point for
all the elements of the gain such that the largest element has the best
possible precision.

This parameter is only visible if Specify via dialog is selected for the
Parameter data type mode parameter.

Parameter scaling
Set the gain scaling using either binary point-only or [Slope Bias] scaling.
This parameter is only visible if Specify via dialog is selected for the
Parameter data type mode parameter, and if Use specified scaling is
selected for the Parameter scaling mode parameter.

Output data type mode
Set the data type and scaling of the output to be the same as that of the
input, or to be inherited via an internal rule or by backpropagation.
Alternatively, choose to specify the data type and scaling of the output
through the Output data type and Output scaling value parameters in
the dialog.

If you select Inherit via internal rule for this parameter, Simulink
chooses a combination of output scaling and data type that requires the
smallest amount of memory consistent with accommodating the output
range and maintaining the output precision of the block. If the Production
hardware characteristics parameter on the Advanced pane of the
Simulation Parameters dialog is set to Unconstrained integer sizes,
2-163

Gain, Matrix Gain

slref.book Page 164 M onday, Septem ber 27, 2004 3:20 PM
Simulink chooses the output data type without regard to hardware
constraints. If the parameter is set to Microprocessor, Simulink chooses
the smallest available hardware data type capable of meeting the range
and precision constraints. For example, if the block multiplies an input of
type int8 by a gain of int16 and Unconstrained integer sizes is
specified, the output data type is sfix24. If Microprocessor is specified
and the microprocessor supports 8-bit, 16-bit, and 32-bit words, the output
data type is int32. If none of the word lengths provided by the target
microprocessor can accommodate the output range, Simulink displays an
error message in the Simulink Diagnostic Viewer.

Output data type
Set the output data type. This parameter is only visible if Specify via
dialog is selected for the Output data type mode parameter.

Output scaling value
Set the output scaling using either binary point-only or [Slope Bias]
scaling. This parameter is only visible if Specify via dialog is selected
for the Output data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for integer output.

Saturate on integer overflow
If selected, overflows saturate.

Conversions
and Operations

The gain is converted from doubles to the specified data type offline using
round-to-nearest and saturation. Refer to “Parameter Conversions” in the
Fixed-Point Blockset documentation for more information about parameter
conversions. The input and gain are then multiplied, and the result is
converted to the output data type using the specified rounding and overflow
modes. Refer to “Rules for Arithmetic Operations” in the Fixed-Point Blockset
documentation for more information about the rules that this block obeys when
performing fixed-point operations.
2-164

Gain, Matrix Gain

slref.book Page 165 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of input and Gain parameter for Element-wise
multiplication

Zero Crossing No
2-165

Goto

slref.book Page 166 M onday, Septem ber 27, 2004 3:20 PM
2GotoPurpose Pass block input to From blocks

Library Signal Routing

Description The Goto block passes its input to its corresponding From blocks. The input can
be a real- or complex-valued signal or vector of any data type. From and Goto
blocks allow you to pass a signal from one block to another without actually
connecting them.

A Goto block can pass its input signal to more than one From block, although
a From block can receive a signal from only one Goto block. The input to that
Goto block is passed to the From blocks associated with it as though the blocks
were physically connected. For limitations on the use of From and Goto blocks,
see From on page 2-148. Goto blocks and From blocks are matched by the use of
Goto tags, defined in the Tag parameter.

The Tag visibility parameter determines whether the location of From blocks
that access the signal is limited:

• local, the default, means that From and Goto blocks using the same tag
must be in the same subsystem. A local tag name is enclosed in brackets ([]).

• scoped means that From and Goto blocks using the same tag must be in the
same subsystem or in any subsystem below the Goto Tag Visibility block in
the model hierarchy. A scoped tag name is enclosed in braces ({}).

• global means that From and Goto blocks using the same tag can be
anywhere in the model.

Note A scoped Goto block in a masked system is visible only in that
subsystem and in the subsystems it contains. Simulink generates an error if
you run or update a diagram that has a Goto Tag Visibility block at a higher
level in the block diagram than the corresponding scoped Goto block in the
masked subsystem.

Use local tags when the Goto and From blocks using the same tag name reside
in the same subsystem. You must use global or scoped tags when the Goto and
From blocks using the same tag name reside in different subsystems. When
you define a tag as global, all uses of that tag access the same signal. A tag
2-166

Goto

slref.book Page 167 M onday, Septem ber 27, 2004 3:20 PM
defined as scoped can be used in more than one place in the model. This
example shows a model that uses two scoped tags with the same name (A).

Data Type
Support

A Goto block accepts real or complex signals of any data type supported by
Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-167

Goto

slref.book Page 168 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Tag
The Goto block identifier. This parameter identifies the Goto block whose
scope is defined in this block.

Tag visibility
The scope of the Goto block tag: local, scoped, or global. The default is
local.

Corresponding From blocks
List of the From blocks connected to this Goto block. Double-clicking any
entry in this list displays and highlights the corresponding From block.

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes
2-168

Goto Tag Visibility

slref.book Page 169 M onday, Septem ber 27, 2004 3:20 PM
2Goto Tag VisibilityPurpose Define scope of Goto block tag

Library Signal Routing

Description The Goto Tag Visibility block defines the accessibility of Goto block tags that
have scoped visibility. The tag specified as the Goto tag parameter is
accessible by From blocks in the same subsystem that contains the Goto Tag
Visibility block and in subsystems below it in the model hierarchy.

A Goto Tag Visibility block is required for Goto blocks whose Tag visibility
parameter value is scoped. No Goto Tag Visibility block is needed if the tag
visibility is either local or global. The block icon shows the tag name enclosed
in braces ({}).

Data Type
Support

Not applicable.

Parameters
and Dialog Box

Goto tag
The Goto block tag whose visibility is defined by the location of this block.

Characteristics Sample Time N/A

Dimensionalized N/A
2-169

Ground

slref.book Page 170 M onday, Septem ber 27, 2004 3:20 PM
2GroundPurpose Ground an unconnected input port

Library Sources

Description The Ground block can be used to connect blocks whose input ports are not
connected to other blocks. If you run a simulation with blocks having
unconnected input ports, Simulink issues warning messages. Using Ground
blocks to ground those blocks avoids warning messages. The Ground block
outputs a signal with zero value. The data type of the signal is the same as that
of the port to which it is connected.

Data Type
Support

A Ground block outputs a signal of the same numeric type and data type as the
port to which it is connected. For example, consider the following model.

In this example, the output of the Constant block determines the data type
(int8) of the port to which the Ground block is connected. That port in turn
determines the type of the signal output by the Ground block.

The Ground block supports all data types supported by Simulink, as well as
fixed-point data types.

Parameters
and Dialog Box

Characteristics Sample Time Inherited from driven block

Dimensionalized Yes
2-170

Hit Crossing

slref.book Page 171 M onday, Septem ber 27, 2004 3:20 PM
2Hit CrossingPurpose Detect crossing point

Library Discontinuities

Description The Hit Crossing block detects when the input reaches the Hit crossing offset
parameter value in the direction specified by the Hit crossing direction
parameter.

The block accepts one input of type double. If the Show output port check box
is selected, the block output indicates when the crossing occurs. If the input
signal is exactly the value of the offset value after the hit crossing is detected,
the block continues to output a value of 1. If the input signals at two adjacent
points bracket the offset value (but neither value is exactly equal to the offset),
the block outputs a value of 1 at the second time step. If the Show output port
check box is not selected, the block ensures that the simulation finds the
crossing point but does not generate output.

When the block’s Hit crossing direction parameter is set to either, the block
serves as an “Almost Equal” block, useful in working around limitations in
finite mathematics and computer precision. Used for these reasons, this block
might be more convenient than adding logic to your model to detect this
condition.

The hardstop and clutch demos illustrate the use of the Hit Crossing block. In
the hardstop demo, the Hit Crossing block is in the Friction Model subsystem.
In the clutch demo, the Hit Crossing block is in the Lockup Detection
subsystem.

Data Type
Support

A Hit Crossing block outputs a signal of type boolean if Boolean logic signals
are enabled (see “Enabling Strict Boolean Type Checking”). Otherwise, the
block outputs a signal of type double.
2-171

Hit Crossing

slref.book Page 172 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Hit crossing offset
The value whose crossing is to be detected.

Hit crossing direction
The direction from which the input signal approaches the hit crossing offset
for a crossing to be detected.

Show output port
If selected, draw an output port.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes
2-172

IC

slref.book Page 173 M onday, Septem ber 27, 2004 3:20 PM
2ICPurpose Set the initial value of a signal

Library Signal Attributes

Description The IC block sets the value of the signal at its output port at t=0.

The IC block is also useful for providing an initial guess for the algebraic state
variables in the loop. For more information, see “Algebraic “Loops” in Using
Simulink.

Data Type
Support

An IC block accepts and outputs a signal of type double.

Dialog Box

Initial value
Specify the initial value for the input signal.

Examples These blocks illustrate how the IC block initializes a signal labeled “test
signal.”

At t = 0, the signal value is 3. Afterwards, the signal value is 6.

[1]

IC
2-173

IC

slref.book Page 174 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of parameter only

Zero Crossing No
2-174

If

slref.book Page 175 M onday, Septem ber 27, 2004 3:20 PM
2IfPurpose Implement a C-like if-else control flow statement in Simulink

Library Ports & Subsystems

Description The If block, along with If Action subsystems containing Action Port blocks,
implements standard C-like if-else logic.

The following shows a completed if-else control flow statement.

In this example, the inputs to the If block determine the values of conditions
represented as output ports. Each output port is attached to an If Action
subsystem. The conditions are evaluated top down starting with the if
condition. If a condition is true, its If Action subsystem is executed and the If
block does not evaluate any remaining conditions.

The preceding if-else control flow statement can be represented by the
following pseudocode.

if (u1 > 0) {
body_1;

}
elseif (u2 > 0){

body_2;
}
else {

body_3;
}

2-175

If

slref.book Page 176 M onday, Septem ber 27, 2004 3:20 PM
You construct a Simulink if-else control flow statement like the preceding
example as follows:

1 Place an If block in the current system.

2 Open the Block Parameters dialog of the If block and enter as follows:

- Enter the Number of inputs field with the required number of inputs
necessary to define conditions for the if-else control flow statement.

Elements of vector inputs can be accessed for conditions using (row,
column) arguments. For example, you can specify the fifth element of the
vector u2 in the condition u2(5) > 0 in an If expression or Elseif
expressions field.

- Enter the expression for the if condition of the if-else control flow
statement in the If expression field.

This creates an if output port for the If block with a label of the form
if(condition). This is the only required If Action signal output for an If
block.

- Enter expressions for any elseif conditions of the if-else control flow
statement in the Elseif expressions field.

Use a comma to separate one condition from another. Entering these
conditions creates an output port for the If block for each condition, with a
label of the form elseif(condition). elseif ports are optional and not
required for operation of the If block.

- Check the Show else condition check box to create an else output port.

The else port is optional and not required for the operation of the If block.

3 Create If Action subsystems to connect to each of the if, else, and elseif ports.

These consist of a subsystem with an Action Port block. When you place an
Action Port block inside each subsystem, an input port named Action is
added to the subsystem.

4 Connect each if, else, and elseif port of the If block to the Action port of an If
Action subsystem.

When you make the connection, the icon for the If Action block is renamed
to the type of the condition that it attaches to.
2-176

If

slref.book Page 177 M onday, Septem ber 27, 2004 3:20 PM
Note During simulation of an if-else control flow statement, the Action
signal lines from the If block to the If Action subsystems turn from solid to
dashed.

5 In each If Action subsystem, enter the Simulink blocks appropriate to the
body to be executed for the condition it handles.

In the preceding example, this is shown as body_1, body_2, and body_3.

Data Type
Support

Inputs u1,u2,...,un can be scalar or vector of any data type supported by
Simulink. For a discussion on the data types supported by Simulink, refer to
“Data Types Supported by Simulink” in the Using Simulink documentation.

Outputs from the if, else, and elseif ports are Action signals to If Action
subsystems that are created with Action Port blocks and subsystems. See
Action Port on page 2-5.
2-177

If

slref.book Page 178 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Number of inputs
The number of inputs to the If block. These appear as data input ports
labeled with a 'u' character followed by a number, 1,2,...,n, where n
equals the number of inputs that you specify.

If expression
The condition for the if output port. This condition appears on the If block
adjacent to the if output port. The if expression can use any of the
following operators: <. <=, ==, ~=, >, >=, &, |, ~, (), unary-minus.
The If Action subsystem attached to the if port executes if its condition is
true.

Elseif expressions
A string list of elseif conditions delimited by commas. These conditions
appear below the if port and above the else port if the Show else
condition check box is selected. elseif expressions can use any of the
following operators: <. <=, ==, ~=, >, >=, &, |, ~, (), unary-minus.
The If Action subsystem attached to an elseif port executes if its condition
is true and all of the if and elseif conditions are false.
2-178

If

slref.book Page 179 M onday, Septem ber 27, 2004 3:20 PM
Show else condition
If this box is selected, an else port is created. The If Action subsystem
attached to the else port executes if the if port and all the elseif ports
are false.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes
2-179

If Action Subsystem

slref.book Page 180 M onday, Septem ber 27, 2004 3:20 PM
2If Action SubsystemPurpose Represent a subsystem whose execution is triggered by an If block

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as a starting
point for creating a subsystem whose execution is triggered by an If block. For
more information, see the If block and “Control Flow Blocks” in Using
Simulink.
2-180

Inport

slref.book Page 181 M onday, Septem ber 27, 2004 3:20 PM
2InportPurpose Create an input port for a subsystem or an external input

Library Ports & Subsystems, Sources

Description Inport blocks are the links from outside a system into the system.

Simulink assigns Inport block port numbers according to these rules:

• It automatically numbers the Inport blocks within a top-level system or
subsystem sequentially, starting with 1.

• If you add an Inport block, it is assigned the next available number.

• If you delete an Inport block, other port numbers are automatically
renumbered to ensure that the Inport blocks are in sequence and that no
numbers are omitted.

• If you copy an Inport block into a system, its port number is not renumbered
unless its current number conflicts with an Inport block already in the
system. If the copied Inport block port number is not in sequence, you must
renumber the block or you will get an error message when you run the
simulation or update the block diagram.

You can specify the dimensions of the input to the Inport block using the Port
dimensions parameter, or let Simulink determine it automatically by
providing a value of -1.

The Sample time parameter is the rate at which the signal is coming into the
system. The value of -1 causes the block to inherit its sample time from the
block driving it. It might be appropriate to set this parameter for Inport blocks
in the top-level system or in models where Inport blocks are driven by blocks
whose sample times cannot be determined. See “Specifying Sample Time” in
the online documentation for more information.

Inport Blocks in a Subsystem
Inport blocks in a subsystem represent inputs to the subsystem. A signal
arriving at an input port on a Subsystem block flows out of the associated
Inport block in that subsystem. The Inport block associated with an input port
on a Subsystem block is the block whose Port number parameter matches the
relative position of the input port on the Subsystem block. For example, the
Inport block whose Port number parameter is 1 gets its signal from the block
connected to the topmost port on the Subsystem block.

1

In1
2-181

Inport

slref.book Page 182 M onday, Septem ber 27, 2004 3:20 PM
If you renumber the Port number of an Inport block, the block becomes
connected to a different input port, although the block continues to receive its
signal from the same block outside the subsystem.

The Inport block name appears in the Subsystem block icon as a port label. To
suppress display of the label, select the Inport block, choose Hide Name from
the Format menu, then choose Update Diagram from the Edit menu.

Inport Blocks in a Top-Level System
Inport blocks in a top-level system have two uses: to supply external inputs
from the workspace, which you can do by using either the Simulation
Parameters dialog box or the sim command, and to provide a means for
analysis functions to perturb the model.

• To supply external inputs from the workspace, use either the Simulation
Parameters dialog (see “Loading Input from the Base Workspace”) or the ut
argument of the sim command (see sim) to specify the inputs.

• To provide a means for perturbation of the model by the linmod and trim
analysis functions. Inport blocks define the points where inputs are injected
into the system. For information about using Inport blocks with analysis
commands, see “Analyzing Simulation Results” in Using Simulink.

Data Type
Support

An Inport block accepts complex or real signals of any data type supported by
Simulink, as well as fixed-point data types. For a discussion on the data types
supported by Simulink, refer to “Data Types Supported by Simulink” in the
Using Simulink documentation.

The numeric and data types of the block’s output are the same as those of its
input. You can specify the signal type, data type, and sampling mode of an
external input to a root-level Inport block using the Signal type, Data type,
and Sampling mode parameters.

The elements of a signal array connected to a root-level Inport block must be of
the same numeric and data types. Signal elements connected to a subsystem
inport can be of differing numeric and data types except in the following
circumstance: If the subsystem contains an Enable or Trigger block and the
2-182

Inport

slref.book Page 183 M onday, Septem ber 27, 2004 3:20 PM
inport is connected directly to an outport, the input elements must be of the
same type. For example, consider the follow enabled subsystem.

In this example, the elements of a signal vector connected to In1 must be of the
same type. The elements connected to In2, however, can be of differing types.

Parameters
and Dialog Box

Port number
Specify the port number of the Inport block.

Port dimensions
Specify the dimensions of the input signal to the Inport block. Valid values
are

• -1—Dimensions are inherited from input signal

• n—Vector signal of width n accepted

• [m n]—Matrix signal having m rows and n columns accepted
2-183

Inport

slref.book Page 184 M onday, Septem ber 27, 2004 3:20 PM
Sample time
Specify the sample time of the input signal. Valid values are

• -1—Any sample time accepted
• period >= 0
• [offset, period]
• [0, -1]

• [-1, -1]

where period is the sample rate and offset is the offset of the sample
period from time zero. See “Specifying Sample Time” in the online
documentation for more information.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown:
2-184

Inport

slref.book Page 185 M onday, Septem ber 27, 2004 3:20 PM
Latch (buffer) input
This field is enabled only if the Inport block resides in a triggered
subsystem. If selected, the block outputs the value of the input signal at the
previous time step.

Data type
Specify the data type of the external input. To accept any data type, set this
parameter to auto.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Data type
parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Data
type parameter.

Signal type
Specify the numeric type (real or complex) of the external input. To accept
any numeric type, set this parameter to auto.

Sampling mode
Specify the sampling mode (Sample based or Frame based) that the input
signal must match. To accept any sampling mode, set this parameter to
auto.

Interpolate data
Select this parameter to cause the block to interpolate or extrapolate
output at time steps for which no corresponding workspace data exists
when loading data from the workspace. See “Loading Input from the Base
Workspace” for more information.

Characteristics Dimensionalized Yes

Sample Time Inherited from driving block
2-185

Integrator

slref.book Page 186 M onday, Septem ber 27, 2004 3:20 PM
2IntegratorPurpose Integrate a signal

Library Continuous

Description The Integrator block outputs the integral of its input at the current time step.
The following equation represents the output of the block y as a function of its
input u and an initial condition y0, where y and u are vector functions of the
current simulation time t.

Simulink can use a number of different numerical integration methods to
compute the Integrator block’s output, each with advantages in particular
applications. The Solver pane of the Simulation parameters dialog box (see
“The Solver Pane”) allows you to select the technique best suited to your
application.

Simulink treats the Integrator block as a dynamic system with one state, its
output. The Integrator block’s input is the state’s time derivative.

The currently selected solver computes the output of the Integrator block at the
current time step, using the current input value and the value of the state at
the previous time step. To support this computational model, the Integrator
block saves its output at the current time step for use by the solver to compute
its output at the next time step. The block also provides the solver with an
initial condition for use in computing the block’s initial state at the beginning
of a simulation run. The default value of the initial condition is 0. The block’s
parameter dialog box allows you to specify another value for the initial
condition or create an initial value input port on the block.

y t() u t() td
t0

t

∫ y0+=

x y t()=

x0 y0=

x· u t()=
2-186

Integrator

slref.book Page 187 M onday, Septem ber 27, 2004 3:20 PM
The parameter dialog box also allows you to

• Define upper and lower limits on the integral

• Create an input that resets the block’s output (state) to its initial value,
depending on how the input changes

• Create an optional state output that allows you to use the value of the block’s
output to trigger a block reset

Use the Discrete-Time Integrator block to create a purely discrete system.

Defining Initial Conditions
You can define the initial conditions as a parameter on the block dialog box or
input them from an external signal:

• To define the initial conditions as a block parameter, specify the Initial
condition source parameter as internal and enter the value in the Initial
condition parameter field.

• To provide the initial conditions from an external source, specify the Initial
condition source parameter as external. An additional input port appears
under the block input, as shown in this figure.

Note If the integrator limits its output (see “Limiting the Integral”), the
initial condition must fall inside the integrator’s saturation limits. If the
initial condition is outside the block’s saturation limits, the block displays an
error message.
2-187

Integrator

slref.book Page 188 M onday, Septem ber 27, 2004 3:20 PM
Limiting the Integral
To prevent the output from exceeding specifiable levels, select the Limit
output check box and enter the limits in the appropriate parameter fields.
Doing so causes the block to function as a limited integrator. When the output
reaches the limits, the integral action is turned off to prevent integral wind up.
During a simulation, you can change the limits but you cannot change whether
the output is limited. The output is determined as follows:

• When the integral is less than or equal to the Lower saturation limit and
the input is negative, the output is held at the Lower saturation limit.

• When the integral is between the Lower saturation limit and the Upper
saturation limit, the output is the integral.

• When the integral is greater than or equal to the Upper saturation limit
and the input is positive, the output is held at the Upper saturation limit.

To generate a signal that indicates when the state is being limited, select the
Show saturation port check box. A saturation port appears below the block
output port, as shown on this figure.

The signal has one of three values:

• 1 indicates that the upper limit is being applied.

• 0 indicates that the integral is not limited.

• -1 indicates that the lower limit is being applied.

When this option is selected, the block has three zero crossings: one to detect
when it enters the upper saturation limit, one to detect when it enters the lower
saturation limit, and one to detect when it leaves saturation.

Resetting the State
The block can reset its state to the specified initial condition based on an
external signal. To cause the block to reset its state, select one of the External
2-188

Integrator

slref.book Page 189 M onday, Septem ber 27, 2004 3:20 PM
reset choices. A trigger port appears below the block’s input port and indicates
the trigger type, as shown in this figure.

• Select rising to trigger the state reset when the reset signal has a rising
edge.

• Select falling to trigger the state reset when the reset signal has a falling
edge.

• Select either to trigger the reset when either a rising or falling signal occurs.

• Select level to trigger the reset and hold the output to the initial condition
while the reset signal is nonzero.

The reset port has direct feedthrough. If the block output is fed back into this
port, either directly or through a series of blocks with direct feedthrough, an
algebraic loop results (see “Algebraic Loops”). The Integrator block’s state port
allows you to feed back the block’s output without creating an algebraic loop.

About the State Port
Selecting the Show state port option on the Integrator block’s parameter
dialog box causes an additional output port, the state port, to appear atop the
Integrator block.

The output of the state port is the same as the output of the block’s standard
output port except for the following case. If the block is reset in the current time
step, the output of the state port is the value that would have appeared at the
block’s standard output if the block had not been reset. The state port’s output
appears earlier in the time step than the output of the Integrator block’s output
port. This allows you to avoid creating algebraic loops in the following modeling
scenarios:
2-189

Integrator

slref.book Page 190 M onday, Septem ber 27, 2004 3:20 PM
• Self-resetting integrators (see “Creating Self-Resetting Integrators” on page
2-190)

• Handing off a state from one enabled subsystem to another (see “Handing Off
States Between Enabled Subsystems” on page 2-191)

Note The state port is intended to be used specifically in these two scenarios.
When updating a model, Simulink checks to ensure that the state port is being
used in one of these two scenarios. If not, Simulink signals an error.

Creating Self-Resetting Integrators
The Integrator block’s state port allows you to avoid creating algebraic loops
when creating an integrator that resets itself based on the value of its output.
Consider, for example, the following model.

This model tries to create a self-resetting integrator by feeding the integrator’s
output, subtracted from 1, back into the integrator’s reset port. In so doing,
however, the model creates an algebraic loop. To compute the integrator block’s
output, Simulink needs to know the value of the block’s reset signal, and vice
versa. Because the two values are mutually dependent, Simulink cannot
determine either. It therefore signals an error if you try to simulate or update
this model.
2-190

Integrator

slref.book Page 191 M onday, Septem ber 27, 2004 3:20 PM
The following model uses the integrator’s state port to avoid the algebraic loop.

In this version, the value of the reset signal depends on the value of the state
port. The value of the state port is available earlier in the current time step
than the value of the integrator block’s output port. Thus, Simulink can
determine whether the block needs to be reset before computing the block’s
output, thereby avoiding the algebraic loop.

Handing Off States Between Enabled Subsystems
The state port allows you to avoid an algebraic loop when passing a state
between two enabled subsystems. Consider, for example, the following model.

State

Reset on crossing
zero.
2-191

Integrator

slref.book Page 192 M onday, Septem ber 27, 2004 3:20 PM
In this model, a constant input signal drives two enabled subsystems that
integrate the signal. A pulse generator generates an enabling signal that
causes execution to alternate between the two subsystems. The enable port of
each subsystem is set to reset. This causes the subsystem to reset its integrator
when it becomes active. Resetting the integrator causes the integrator to read
the value of its initial condition port. The initial condition port of the integrator
in each subsystem is connected to the output port of the integrator in the other
subsystem.

This connection is intended to enable continuous integration of the input signal
as execution alternates between the two subsystems. However, the connection
creates an algebraic loop. To compute the output of A, Simulink needs to know
the output of B, and vice versa. Because the outputs are mutually dependent,
Simulink cannot compute them. It therefore generates an error if you attempt
to update or simulate this model.
2-192

Integrator

slref.book Page 193 M onday, Septem ber 27, 2004 3:20 PM
The following version of the same model uses the integrator state port to avoid
creating an algebraic loop when handing off the state.

In this model, the initial condition of the integrator in A depends on the value
of the state port of the integrator in B, and vice versa. The values of the state
ports are updated earlier in the simulation time step than the values of the
integrator output ports. Thus, Simulink can compute the initial condition of
either integrator without knowing the final output value of the other
integrator. For another example of using the state port to hand off states
between conditionally executed subsystems, see the clutch model.

Note Simulink does not permit three or more enabled subsystems to hand off
a model state. If Simulink detects that a model is handing off a state among
more than two enabled subsystems, it generates an error.

Specifying the Absolute Tolerance for the Block’s Outputs
By default Simulink uses the absolute tolerance value specified in the
Simulation Parameters dialog box (see “Error Tolerances”) to compute the
output of the Integrator block. If this value does not provide sufficient error
2-193

Integrator

slref.book Page 194 M onday, Septem ber 27, 2004 3:20 PM
control, specify a more appropriate value in the Absolute tolerance field of the
Integrator block’s dialog box. The value that you specify is used to compute all
of the block’s outputs.

Choosing All Options
When all options are selected, the icon looks like this.

Data Type
Support

An Integrator block accepts and outputs signals of type double on its data
ports. Its external reset port accepts signals of type double or boolean.

Parameters
and Dialog Box

External reset
Resets the states to their initial conditions when a trigger event (rising,
falling, either, or level) occurs in the reset signal.
2-194

Integrator

slref.book Page 195 M onday, Septem ber 27, 2004 3:20 PM
Initial condition source
Gets the states’ initial conditions from the Initial condition parameter (if
set to internal) or from an external block (if set to external).

Initial condition
The states’ initial conditions. Set the Initial condition source parameter
value to internal.

Limit output
If selected, limits the states to a value between the Lower saturation limit
and Upper saturation limit parameters.

Upper saturation limit
The upper limit for the integral. The default is inf.

Lower saturation limit
The lower limit for the integral. The default is -inf.

Show saturation port
If selected, adds a saturation output port to the block.

Show state port
If selected, adds an output port to the block for the block’s state.

Absolute tolerance
Absolute tolerance used to compute the block’s outputs. You can enter auto
or a numeric value. If you enter auto, Simulink determines the absolute
tolerance (see “Error Tolerances”). If you enter a numeric value, Simulink
uses the specified value to compute the block’s outputs. Note that a
numeric value overrides the setting for the absolute tolerance in the
Simulation Parameters dialog box.

Enable zero crossing detection
If this option, Limit output, and zero-crossing detection for the model as a
whole are selected, the Integrator block uses zero-crossings to detect and
take a time step at any of the following events: reset, entering or leaving an
upper saturation state, entering or leaving a lower saturation state. For
more information, see “Zero Crossing Detection” in the Using Simulink
documentation.
2-195

Integrator

slref.book Page 196 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough Yes, of the reset and external initial condition source
ports

Sample Time Continuous

Scalar Expansion Of parameters

States Inherited from driving block or parameter

Dimensionalized Yes

Zero Crossing If the Limit output option is selected, one for
detecting reset, one each to detect upper and lower
saturation limits, one when leaving saturation
2-196

Interpolation (n-D) Using PreLook-Up

slref.book Page 197 M onday, Septem ber 27, 2004 3:20 PM
2Interpolation (n-D) Using PreLook-UpPurpose Perform high-performance constant or linear interpolation, mapping N input
values to a sampled representation of a function in N variables via output from
PreLook-Up Index Search block

Library Look-Up Tables

Description The Interpolation (n-D) Using PreLook-Up block uses the precalculated indices
and interval fractions from the PreLook-Up Index Search block to perform the
equivalent operation that the Look-Up Table (n-D) performs. This combination
of blocks allows multiple Interpolation (n-D) blocks to feed a set of PreLook-Up
Index Search blocks. In models that have many interpolation blocks,
simulation performance can be greatly increased.

This block supports two interpolation methods: flat (constant) interval lookup
and linear interpolation. These operations can be applied to 1-D, 2-D, 3-D, 4-D
and higher dimensioned tables.

You define a set of output values as the Table data parameter. These table
values must correspond to the breakpoint data sets that are in the PreLook-Up
Index Search block. The block generates its output by interpolating the table
values based on the (index,fraction) pairs fed into the block by each
PreLook-Up Index Search block.

The block generates output based on the input values:

• If the inputs match breakpoint parameter values, the output is the table
value at the intersection of the row, column, and higher dimensions’
breakpoints.

• If the inputs do not match row and column parameter values, the block
generates output by interpolating between the appropriate table values. If
either or both block inputs are less than the first or greater than the last row
or column parameter values, the block extrapolates from the first two or last
two points in each corresponding dimension.

Data Type
Support

An Interpolation (n-D) Using PreLook-Up block accepts signals of types double
or single, but for any given block, the inputs must all be of the same type. The
Table data parameter must be of the same type as the inputs. The output data
type is set to the Table data data type.
2-197

Interpolation (n-D) Using PreLook-Up

slref.book Page 198 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Number of table dimensions
The number of dimensions that the Table data parameter must have. This
determines the number of independent variables for the table and hence
the number of inputs to the block (see descriptions for “Explicit Number of
dimensions” and “Use one (vector) input port instead of N ports,” below).

Table data
The table of output values. The matrix size must match the dimensions
defined by the N breakpoint set parameter or by the Explicit number
of dimensions parameter when the number of dimensions exceeds four.
During block diagram editing, you can leave the Table data field empty,
but for running the simulation, you must match the number of dimensions
in the Table data parameter to the Number of table dimensions. For
information about how to construct multidimensional arrays in MATLAB,
see Multidimensional Arrays in MATLAB’s online documentation.

Interpolation method
None (flat) or Linear.

Extrapolation method
None (clip) or Linear.
2-198

Interpolation (n-D) Using PreLook-Up

slref.book Page 199 M onday, Septem ber 27, 2004 3:20 PM
Action for out of range input
None, Warning, Error.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Yes

Zero Crossing No
2-199

Logical Operator

slref.book Page 200 M onday, Septem ber 27, 2004 3:20 PM
2Logical OperatorPurpose Perform the specified logical operation on the input

Library Simulink Math Operations and Fixed-Point Blockset Logic & Comparison

Description The Logical Operator block performs the specified logical operation on its
inputs. An input value is TRUE (1) if it is nonzero and FALSE (0) if it is zero.

You select the Boolean operation connecting the inputs with the Operator
parameter list. The block icon updates to display the selected operator. The
supported operations are given below.

The number of input ports is specified with the Number of input ports
parameter. The output type is specified with the Output data type mode and/
or the Output data type parameters. An output value is 1 if TRUE and 0 if
FALSE.

Note The output data type should represent zero exactly. Data types that
satisfy this condition include signed and unsigned integers, and any
floating-point data type.

The size of the output depends on input vector size and the selected operator:

AND

Logical
Operator

Operation Description

AND TRUE if all inputs are TRUE

OR TRUE if at least one input is TRUE

NAND TRUE if at least one input is FALSE

NOR TRUE when no inputs are TRUE

XOR TRUE if an odd number of inputs are TRUE

NOT TRUE if the input is FALSE
2-200

Logical Operator

slref.book Page 201 M onday, Septem ber 27, 2004 3:20 PM
• If the block has more than one input, any nonscalar inputs must have the
same dimensions. For example, if any input is a 2-by-2 array, all other
nonscalar inputs must also be 2-by-2 arrays.

Scalar inputs are expanded to have the same dimensions as the nonscalar
inputs.

If the block has more than one input, the output has the same dimensions as
the inputs (after scalar expansion) and each output element is the result of
applying the specified logical operation to the corresponding input elements.
For example, if the specified operation is AND and the inputs are 2-by-2
arrays, the output is a 2-by-2 array whose top left element is the result of
applying AND to the top left elements of the inputs, etc.

• For a single vector input, the block applies the operation (except the NOT
operator) to all elements of the vector. The output is always a scalar.

• The NOT operator accepts only one input, which can be a scalar or a vector.
If the input is a vector, the output is a vector of the same size containing the
logical complements of the input vector elements.

When configured as a multi-input XOR gate, this block performs an addition-
modulo-two operation as mandated by the IEEE Standard for Logic Elements.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” in the Fixed-Point
Blockset documentation.

Data Type
Support

A Logical Operator block accepts real or complex signals of any data type
supported by Simulink, as well as fixed-point data types. However, if the
Output data type mode parameter is set to Logical, the input may only be
boolean or double.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-201

Logical Operator

slref.book Page 202 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Operator
The logical operator to be applied to the block inputs. Valid choices are the
operators listed previously.

Number of input ports
The number of block inputs. The value must be appropriate for the selected
operator.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
2-202

Logical Operator

slref.book Page 203 M onday, Septem ber 27, 2004 3:20 PM
Require all inputs and output to have same data type
Select to require all inputs and the output to have the same data type.

Output data type mode
Set the output data type to Boolean, or choose to specify the data type
through the Output data type parameter.

Alternatively, you can select Logical to have the output data type
determined by the Boolean Logic Signals parameter in the Advanced tab
of the Simulation Parameters Interface. If you select Logical and Boolean
Logic Signals is on, then the output data type is always Boolean. If you
select Logical and Boolean Logic Signals is off, then the output data
type will match the input data type, which may be Boolean or double.

Output data type
Output data type. You should only use data types that represent zero
exactly. Data types that satisfy this condition include signed and unsigned
integers and any floating-point data type. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion Of inputs

Zero Crossing No
2-203

Look-Up Table

slref.book Page 204 M onday, Septem ber 27, 2004 3:20 PM
2Look-Up TablePurpose Approximate a one-dimensional function using the specified lookup method

Library Simulink Look-Up Tables and Fixed-Point Blockset LookUp

Description The Look-Up Table block computes an approximation to some function y=f(x)
given data vectors x and y.

Note To map two inputs to an output, use the Look-Up Table (2-D) block.

The length of the x and y data vectors provided to this block must match. Also,
the x data vector must be strictly monotonically increasing after conversion to
the input’s fixed-point data type, except in the following case. If the input x and
the output signal are both either single or double, and if the lookup method is
Interpolation-Extrapolation, then x may be monotonically increasing
rather than strictly monotonically increasing. Note that due to quantization,
the x data vector may be strictly monotonic in doubles format, but not so after
conversion to a fixed-point data type.

You define the table by specifying the Vector of input values parameter as a
1-by-n vector and the Vector of output values parameter as a 1-by-n vector.
The block generates output based on the input values using one of these
methods selected from the Look-up method parameter list:

• Interpolation-Extrapolation—This is the default method; it performs
linear interpolation and extrapolation of the inputs.

- If a value matches the block’s input, the output is the corresponding
element in the output vector.

- If no value matches the block’s input, then the block performs linear
interpolation between the two appropriate elements of the table to
determine an output value. If the block input is less than the first or
greater than the last input vector element, then the block extrapolates
using the first two or last two points.

• Interpolation-Use End Values—This method performs linear
interpolation as described above but does not extrapolate outside the end
points of the input vector. Instead, the end-point values are used.

Look−Up
Table
2-204

Look-Up Table

slref.book Page 205 M onday, Septem ber 27, 2004 3:20 PM
• Use Input Nearest—This method does not interpolate or extrapolate.
Instead, the element in x nearest the current input is found. The
corresponding element in y is then used as the output.

• Use Input Below—This method does not interpolate or extrapolate. Instead,
the element in x nearest and below the current input is found. The
corresponding element in y is then used as the output. If there is no element
in x below the current input, then the nearest element is found.

• Use Input Above—This method does not interpolate or extrapolate. Instead,
the element in x nearest and above the current input is found. The
corresponding element in y is then used as the output. If there is no element
in x above the current input, then the nearest element is found.

To create a table with step transitions, repeat an input value with different
output values. For example, these input and output parameter values create
the input/output relationship described by the plot that follows:

Vector of input values: [-2 -1 -1 0 0 0 1 1 2]
Vector of output values: [-1 -1 -2 -2 1 2 2 1 1]

This example has three step discontinuities: at u = -1, 0, and +1.

When there are two points at a given input value, the block generates output
according to these rules:

• When the input signal u is less than zero, the output is the value connected
with the point first encountered when moving away from the origin in a
negative direction. In this example, when u is -1, y is -2, marked with a solid
circle.

The output value
2-205

Look-Up Table

slref.book Page 206 M onday, Septem ber 27, 2004 3:20 PM
• When u is greater than zero, the output is the value connected with the point
first encountered when moving away from the origin in a positive direction.
In this example, when u is 1, y is 2, marked with a solid circle.

• When u is at the origin and there are two output values specified for zero
input, the actual output is their average. In this example, if there were no
point at u = 0 and y = 1, the output would be 0, the average of the two points
at u = 0. If there are three points at zero, the block generates the output
associated with the middle point. In this example, the output at the origin is
1.

The Look-Up Table block icon displays a graph of the input vector versus the
output vector. When a parameter is changed on the block’s dialog box, the
graph is automatically redrawn when you click the Apply or Close button.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” in the Fixed-Point
Blockset documentation.

To avoid parameter saturation errors, the automatic scaling script autofixexp
employs a special rule for the Look-Up Table block. autofixexp modifies the
scaling by using the output look-up values in addition to the logged minimum
and maximum simulation values. This prevents the data from being saturated
to different values. The look-up values are given by the Vector of output
values parameter (the YDataPoints variable).

Data Type
Support

The Look-Up Table block supports all data types supported by Simulink, as
well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-206

Look-Up Table

slref.book Page 207 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Vector of input values
Specify the vector of input values. The input values vector must be the
same size as the output values vector. Also, the input values vector must
be strictly monotonically increasing after conversion to the input’s
fixed-point data type, except in the following case. If the input values vector
and the output signal are both either single or double, and if the lookup
method is Interpolation-Extrapolation, then the input values vector
may be monotonically increasing rather than strictly monotonically
increasing. Note that due to quantization, the input values vector may be
strictly monotonic in doubles format, but not so after conversion to a
fixed-point data type.

Vector of output values
Specify the vector of output values. The output values vector must be the
same size as the input values vector.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
2-207

Look-Up Table

slref.book Page 208 M onday, Septem ber 27, 2004 3:20 PM
Look-up method
Specify the lookup method. See “Description” on page 2-204 for a discussion
of the options for this parameter.

Output data type mode
You can set the output signal to a built-in data type from this drop-down
list, or you can choose the output data type and scaling to be the same as
the input. Alternatively, you can choose to inherit the output data type and
scaling by backpropagation. Lastly, if you choose Specify via dialog, the
Output data type, Output scaling value, and Lock output scaling
against changes by the autoscaling tool parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Output data type
mode parameter.

Output scaling value
2-208

Look-Up Table

slref.book Page 209 M onday, Septem ber 27, 2004 3:20 PM
Set the output scaling using binary point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Output
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for the fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Conversions
and Operations

The Vector of input values parameter is converted from doubles to the input
data type. The Vector of output values parameter is converted from doubles
to the output data type. Both conversion are performed offline using
round-to-nearest and saturation. Refer to “Parameter Conversions” in the
Fixed-Point Blockset documentation for more information about parameter
conversions.

Examples

Suppose the Look-Up Table block in the above model is configured to use a
vector of input values given by [-5:5], and a vector of output values given by
sinh([-5:5]). The following results are generated.

Look-Up Method Input Output Comment

Interpolation-
Extrapolation

1.4 2.153 N/A

5.2 83.59 N/A
2-209

Look-Up Table

slref.book Page 210 M onday, Septem ber 27, 2004 3:20 PM
Characteristics

See Also Look-Up Table (2-D), Look-Up Table (n-D)

Interpolation-
Use End Values

1.4 2.153 N/A

5.2 74.2 The value for sinh(5.0) was used.

Use Input
Above

1.4 3.627 The value for sinh(2.0) was used.

5.2 74.2 The value for sinh(5.0) was used.

Use Input
Below

1.4 1.175 The value for sinh(1.0) was used.

-5.2 -74.2 The value for sinh(-5.0) was used.

Use Input
Nearest

1.4 1.175 The value for sinh(1.0) was used.

Look-Up Method Input Output Comment

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Zero Crossing No
2-210

Look-Up Table (2-D)

slref.book Page 211 M onday, Septem ber 27, 2004 3:20 PM
2Look-Up Table (2-D)Purpose Approximate a two-dimensional function using a selected look-up method

Library Simulink Look-Up Tables and Fixed-Point Blockset LookUp

Description The Look-Up Table (2-D) block computes an approximation to some function
z=f(x,y) given x, y, z data points.

The Row index input values parameter is a 1-by-m vector of x data points, the
Column index input values parameter is a 1-by-n vector of y data points, and
the Matrix of output values parameter is an m-by-n matrix of z data points.
Both the row and column vectors must be monotonically increasing. These
vectors must be strictly monotonically increasing in the following cases:

• The input and output data types are both fixed-point.

• The input and output data types are different.

• The lookup method is not Interpolation-Extrapolation.

• The matrix of output values is complex.

• Minimum, maximum, and overflow logging is on.

The block generates output based on the input values using one of these
methods selected from the Look-up method parameter list:

• Interpolation-Extrapolation—This is the default method; it performs
linear interpolation and extrapolation of the inputs.

- If the inputs match row and column parameter values, the output is the
value at the intersection of the row and column.

- If the inputs do not match row and column parameter values, then the
block generates output by linearly interpolating between the appropriate
row and column values. If either or both block inputs are less than the first
or greater than the last row or column values, the block extrapolates using
the first two or last two points.

• Interpolation-Use End Values—This method performs linear
interpolation as described above but does not extrapolate outside the end
points of x and y. Instead, the end-point values are used.

• Use Input Nearest—This method does not interpolate or extrapolate.
Instead, the elements in x and y nearest the current inputs are found. The
corresponding element in z is then used as the output.

2−D Lookup
Table

Look−Up
Table (2−D)
2-211

Look-Up Table (2-D)

slref.book Page 212 M onday, Septem ber 27, 2004 3:20 PM
• Use Input Below—This method does not interpolate or extrapolate. Instead,
the elements in x and y nearest and below the current inputs are found. The
corresponding element in z is then used as the output. If there are no
elements in x or y below the current inputs, then the nearest elements are
found.

• Use Input Above—This method does not interpolate or extrapolate. Instead,
the elements in x and y nearest and above the current inputs are found. The
corresponding element in z is then used as the output. If there are no
elements in x or y above the current inputs, then the nearest elements are
found.

To avoid parameter saturation errors, the automatic scaling script autofixexp
employs a special rule for the Look-Up Table (2-D) block. autofixexp modifies
the scaling by using the output look-up values in addition to the logged
minimum and maximum simulation values. The output look-up values are
converted to the specified output data type. This prevents the data from being
saturated to different values.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” in the Fixed-Point
Blockset documentation.

Data Type
Support

The Look-Up Table (2-D) block supports all data types supported by Simulink,
as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-212

Look-Up Table (2-D)

slref.book Page 213 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box
2-213

Look-Up Table (2-D)

slref.book Page 214 M onday, Septem ber 27, 2004 3:20 PM
Row index input values
The row values for the table, entered as a vector. The vector values must
increase monotonically.

Column index input values
The column values for the table, entered as a vector. The vector values
must increase monotonically.

Matrix of output values
The table of output values. The matrix size must match the dimensions
defined by the Row and Column parameters.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
2-214

Look-Up Table (2-D)

slref.book Page 215 M onday, Septem ber 27, 2004 3:20 PM
Look-up method
Specify the lookup method. See “Description” on page 2-211 for a discussion
of the options for this parameter.

Require all inputs to have same data type
Select to require all inputs to have the same data type.

Output data type mode
You can set the output signal to a built-in data type from this drop-down
list, or you can choose the output data type and scaling to be the same as
the input. Alternatively, you can choose to inherit the output data type and
scaling by backpropagation. Lastly, if you choose Specify via dialog, the
Output data type, Output scaling value, and Lock output scaling
against changes by the autoscaling tool parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Output data type
mode parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Output
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for the fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.
2-215

Look-Up Table (2-D)

slref.book Page 216 M onday, Septem ber 27, 2004 3:20 PM
Examples In this example, the block parameters are defined as

Row: [1 2]
Column: [3 4]
Table: [10 20; 30 40]

The first figure shows the block outputting a value at the intersection of block
inputs that match row and column values. The first input is 1 and the second
input is 4. These values select the table value at the intersection of the first row
(row parameter value 1) and second column (column parameter value 4).

In the second figure, the first input is 1.7 and the second is 3.4. These values
cause the block to interpolate between row and column values, as shown in the
table at the left. The value at the intersection (28) is the output value.

Characteristics

See Also Look-Up Table, Look-Up Table (n-D)

3 4

1 10 20

2 30 40

1

2

3 4

10 20

30 40

1.7 24 34

3.4

14

34

28

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Of one input if the other is a vector

Zero Crossing No
2-216

Look-Up Table (n-D)

slref.book Page 217 M onday, Septem ber 27, 2004 3:20 PM
2Look-Up Table (n-D)Purpose Perform constant, linear, or spline interpolated mapping of N input values to a
sampled representation of a function in N variables

Library Look-Up Tables

Description The Look-Up Table (n-D) block evaluates a sampled representation of a
function in N variables by interpolating between samples to give an
approximate value for , even when the function F is
known only empirically. The block efficiently maps the block inputs to the
output value using interpolation on a table of values defined by the block’s
parameters. Interpolation methods supported are

• Flat (constant)

• Linear

• Natural (cubic) spline

You can apply any of these methods to 1-D, 2-D, 3-D, or higher dimensional
tables.

You define a set of output values as the Table data parameter and the values
that correspond to its rows, columns, and higher dimensions with the Nth
breakpoint set parameter. The block generates an output value by comparing
the block inputs with the breakpoint set parameters. The first input identifies
the first dimension (row) breakpoints, the second breakpoint set identifies a
column, and so on, as shown by this figure.

If you are unfamiliar with how to construct N-dimensional arrays in MATLAB,
see Multidimensional Arrays in MATLAB’s online documentation.

y F x1 x2 x3 … xn, , , ,()=
2-217

Look-Up Table (n-D)

slref.book Page 218 M onday, Septem ber 27, 2004 3:20 PM
The block generates output based on the input values:

• If the inputs match breakpoint parameter values, the output is the table
value at the intersection of the row, column, and higher dimensions
breakpoints.

• If the inputs do not match row and column parameter values, the block
generates output by interpolating between the appropriate table values. If
any of the block inputs are outside the ranges of their respective breakpoint
sets, the block limits the input values to the breakpoint set's range in that
dimension. If extrapolation is enabled, it extrapolates linearly or by using a
cubic polynomial (if you selected cubic spline extrapolation).

Note As an alternative, you can use the Look-Up Table (n-D) block with the
PreLook-Up Index Search block to have more flexibility and potentially much
higher performance for linear interpolations in certain circumstances.

For noninterpolated table lookups, use the Direct Look-Up Table (n-D) block
when the lookup operation is a simple array access, for example, if you have an
integer value k and you merely want the kth element of a table, y = table(k).

Data Type
Support

A Look-Up Table (n-D) block accepts signals of types double or single, but for
any given Look-Up Table (n-D) block, the inputs must all be of the same type.
Table data and Breakpoint set parameters must be of the same type as the
inputs. The output data type is also set to the input data type.
2-218

Look-Up Table (n-D)

slref.book Page 219 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Number of table dimensions
The number of dimensions that the Table data parameter is to have. This
determines the number of independent variables for the table and hence
the number of inputs to the block (see descriptions for “Explicit Number of
dimensions” and “Use one (vector) input port instead of N ports”,
following).

First input (row) breakpoint set
The row values represented in the table, entered as a vector. The vector
values must increase monotonically. This field is always visible.

Second (column) input breakpoint set
The column values for the table, entered as a vector. The vector values
must increase monotonically. This field is visible if the Number of table
dimensions value is 2, 3, 4, or More.
2-219

Look-Up Table (n-D)

slref.book Page 220 M onday, Septem ber 27, 2004 3:20 PM
Third ... Nth input breakpoint set
The values corresponding to the third dimension for the table, entered as a
vector. The vector values must increase monotonically. This field is visible
if the Number of table dimensions is 3, 4, or More.

Fourth input breakpoint set
The values corresponding to the fourth dimension for the table, entered as
a vector. The vector values must increase monotonically. This field is
visible if the Number of table dimensions is 4 or More.

Fifth..Nth input breakpoint sets (cell array)
The cell array of values corresponding to the third, fourth, or higher
dimensions for the table, entered as a 1-D cell array of vectors. For
example, {[10:10:30], [0:10:100]} is a cell array of two vectors that are
used for the fifth and sixth dimensions’ breakpoint sets. The vector values
must increase monotonically. This field is visible if the Number of table
dimensions is More.

Explicit number of dimensions
The number of table dimensions when the number is 5 or more. This is
indicated when you set the Number of table dimensions field to More.

Index search method
Choose Evenly Spaced Points, Linear Search, or Binary Search (the
default). Each search method has speed advantages over the others in
different circumstances. A suboptimal choice of index search method can
lead to slow performance in models that rely heavily on lookup tables. If the
breakpoint data is evenly spaced, e.g., 10, 20, 30, ..., you can achieve the
greatest speed by selecting Evenly Spaced Points to directly calculate the
indices into the table. For irregularly spaced breakpoint sets, if the input
signals do not vary much from one time step to the next, selecting Linear
Search and Begin index searches using previous index results at the
same time will produce the best performance. For irregularly spaced
breakpoint sets with rapidly varying input signals that jump more than
one or two table intervals per time step, selecting Binary Search gives the
best performance. Note that the Evenly Spaced Points algorithm only
makes use of the first two breakpoints in determining the offset and
spacing of the rest of the points.
2-220

Look-Up Table (n-D)

slref.book Page 221 M onday, Septem ber 27, 2004 3:20 PM
Begin index searches using previous index results
Activating this option causes the block to initialize index searches using
the index found on the previous time step. This is a huge performance
improvement for the block when the input signals do not change much with
respect to its position in the table from one time step to the next. When this
option is deactivated, the linear search and binary search methods can take
significantly longer, especially for large breakpoint data sets.

Use one (vector) input port instead of N ports
Instead of having one input port per independent variable, the block is
configured with just one input port that expects a signal that is N elements
wide for an N-dimensional table. This might be useful in removing line
clutter on a block diagram with large numbers of tables.

Table data
The table of output values. To execute a model with this block, the matrix
size must match the dimensions defined by the N breakpoint set
parameter or by the Explicit number of dimensions parameter when the
number of dimensions exceeds 4. During block diagram editing, you can
leave this field blank because only the Number of table dimensions field
is required to set the number of ports on the block.

Interpolation method
None (flat), Linear, or Cubic Spline.

Extrapolation method
None (clip), Linear, or Cubic Spline.

Action for out of range input
None, Warning, or Error. An out-of-range condition during simulation
results in warning messages in the command window if “Warning” is
selected, and the simulation halts with an error message if “Error” is
selected.
2-221

Look-Up Table (n-D)

slref.book Page 222 M onday, Septem ber 27, 2004 3:20 PM
Characteristics
Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion No

Dimensionalized No

Zero Crossing No
2-222

Magnitude-Angle to Complex

slref.book Page 223 M onday, Septem ber 27, 2004 3:20 PM
2Magnitude-Angle to ComplexPurpose Convert a magnitude and/or a phase angle signal to a complex signal

Library Math Operations

Description The Magnitude-Angle to Complex block converts magnitude and/or phase
angle inputs to a complex-valued output signal. The inputs must be real-valued
signals of type double. The angle input is assumed to be in radians. The data
type of the complex output signal is double.

The inputs can both be signals of equal dimensions, or one input can be an
array and the other a scalar. If the block has an array input, the output is an
array of complex signals. The elements of a magnitude input vector are mapped
to magnitudes of the corresponding complex output elements. An angle input
vector is similarly mapped to the angles of the complex output signals. If one
input is a scalar, it is mapped to the corresponding component (magnitude or
angle) of all the complex output signals.

Data Type
Support

See the preceding block description.

Parameters
and Dialog Box

Input
Specifies the kind of input: a magnitude input, an angle input, or both.

Angle (Magnitude)
If the input is an angle signal, specifies the constant magnitude of the
output signal. If the input is a magnitude, specifies the constant phase
angle in radians of the output signal.
2-223

Magnitude-Angle to Complex

slref.book Page 224 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of the input when the function requires two inputs

Dimensionalized Yes

Zero Crossing No
2-224

Manual Switch

slref.book Page 225 M onday, Septem ber 27, 2004 3:20 PM
2Manual SwitchPurpose Switch between two inputs

Library Signal Routing

Description The Manual Switch block is a toggle switch that selects one of its two inputs to
pass through to the output. To toggle between inputs, double-click the block
icon (there is no dialog box). The selected input is propagated to the output,
while the unselected input is discarded. You can set the switch before the
simulation is started or throw it while the simulation is executing to
interactively control the signal flow. The Manual Switch block retains its
current state when the model is saved.

Data Type
Support

A Manual Switch block accepts real or complex signals of any data type
supported by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

None

Characteristics

Manual Switch

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Zero Crossing No
2-225

Math Function

slref.book Page 226 M onday, Septem ber 27, 2004 3:20 PM
2Math FunctionPurpose Perform a mathematical function

Library Math Operations

Description The Math Function block performs numerous common mathematical
functions.

You can select one of these functions from the Function list: exp, log, 10u,
log10, magnitude2, square, sqrt, pow, conj, reciprocal, hypot, rem, mod,
transpose, and hermitian. The block output is the result of the operation of
the function on the input or inputs.

The name of the function appears on the block icon. Simulink automatically
draws the appropriate number of input ports.

Use the Math Function block instead of the Fcn block when you want vector or
matrix output, because the Fcn block can produce only scalar output.

Data Type
Support

A Math Function block accepts complex or real signals or signal vectors of type
double. The output signal type is real or complex, depending on the setting of
the Output signal type parameter.

Parameters
and Dialog Box

Function
The mathematical function.
2-226

Math Function

slref.book Page 227 M onday, Septem ber 27, 2004 3:20 PM
Output signal type
The dialog allows you to select the output signal type of the Math Function
block as real, complex, or auto.

Characteristics

Input Output Signal Type

Function Signal Auto Real Complex

Exp, log, 10u, log10,
square, sqrt, pow,
reciprocal, conjugate,
transpose, hermitian

real
complex

real
complex

real
error

complex
complex

magnitude squared real
complex

real
real

real
real

complex
complex

hypot, rem, mod real
complex

real
error

real
error

complex
error

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of the input when the function requires two inputs

Dimensionalized Yes

Zero Crossing No
2-227

MATLAB Fcn

slref.book Page 228 M onday, Septem ber 27, 2004 3:20 PM
2MATLAB FcnPurpose Apply a MATLAB function or expression to the input

Library User-Defined Functions

Description The MATLAB Fcn block applies the specified MATLAB function or expression
to the input. The output of the function must match the output dimensions of
the block or an error occurs.

Here are some sample valid expressions for this block.

sin
atan2(u(1), u(2))
u(1)^u(2)

Note This block is slower than the Fcn block because it calls the MATLAB
parser during each integration step. Consider using built-in blocks (such as
the Fcn block or the Math Function block) instead, or writing the function as
an M-file or MEX-file S-function, then accessing it using the S-Function block.

Data Type
Support

A MATLAB Fcn block accepts one complex or real input of type double and
generates real or complex output of type double, depending on the setting of
the Output signal type parameter.

Parameters
and Dialog Box
2-228

MATLAB Fcn

slref.book Page 229 M onday, Septem ber 27, 2004 3:20 PM
MATLAB function
The function or expression. If you specify a function only, it is not necessary
to include the input argument in parentheses.

Output dimensions
Dimensions of the signal output by this block. If the output dimensions are
to be the same as the dimensions of the input signal, specify -1. Otherwise,
enter the dimensions of the output signal, e.g., 2 for a two-element vector.
In either case, the output dimensions must match the dimensions of the
value returned by the function or expression in the MATLAB function
field.

Output signal type
The dialog allows you to select the output signal type of the MATLAB Fcn
as real, complex, or auto. A value of auto sets the block’s output type to be
the same as the type of the input signal.

Collapse 2-D results to 1-D
Outputs a 2-D array as a 1-D array containing the 2-D array’s elements in
column-major order.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No
2-229

Matrix Concatenation

slref.book Page 230 M onday, Septem ber 27, 2004 3:20 PM
2Matrix ConcatenationPurpose Concatenate inputs horizontally or vertically

Library Math Operations

Description The Matrix Concatenation block concatenates input matrices u1, u2, ..., un
along rows or columns, where n is specified by the Number of inputs
parameter. The block accepts inputs with any combination of built-in Simulink
data types and/or fixed-point data types. If all inputs are sample-based, the
output is sample-based. Otherwise, the output is frame-based.

Horizontal Matrix Concatenation
When the Concatenation method parameter is set to Horizontal, the block
concatenates the input matrices along rows.

y = [u1 u2 u3 ... un] % Equivalent MATLAB code

For horizontal concatenation, inputs must all have the same row dimension, M,
but can have different column dimensions. The output matrix has dimension
M-by-ΣNi, where Ni is the number of columns in input ui (i = 1, 2, ..., n).

When some of the inputs are length-M 1-D vectors while others are M-by-Ni
matrices, the vector inputs are treated as M-by-1 matrices.

Vertical Matrix Concatenation
When the Concatenation method parameter is set to Vertical, the block
concatenates the input matrices along columns.

y = [u1;u2;u3;...;un] % Equivalent MATLAB code

For vertical concatenation, inputs must all have the same column
dimension, N, but can have different row dimensions. The output matrix has
dimension ΣMi-by-N, where Mi is the number of rows in input ui (i = 1, 2, ..., n).

When some of the inputs are length-Mi 1-D vectors while others are Mi-by-1
matrices, the vector inputs are treated as Mi-by-1 matrices. (1-D vector inputs
are not accepted for vertical concatenation when the other inputs have column
dimension greater than 1.)
2-230

Matrix Concatenation

slref.book Page 231 M onday, Septem ber 27, 2004 3:20 PM
1-D Vector Concatenation
When all inputs to the Matrix Concatenation block are length-Mi 1-D vectors,
the output is a ΣMi-by-1 matrix containing all input elements concatenated in
port order: the elements in the vector input to the top port appear as the first
elements in the output, and the elements in the vector input to the bottom port
appear as the last elements in the output.

Dialog Box

Number of inputs
The number of matrices to concatenate.

Concatenation method
The dimension along which to concatenate the inputs.
2-231

Memory

slref.book Page 232 M onday, Septem ber 27, 2004 3:20 PM
2MemoryPurpose Output the block input from the previous integration step

Library Discrete

Description The Memory block outputs its input from the previous time step, applying a one
integration step sample-and-hold to its input signal.

This sample model demonstrates how to display the step size used in a
simulation. The Sum block subtracts the time at the previous step, generated
by the Memory block, from the current time, generated by the clock.

Note Avoid using the Memory block when integrating with ode15s or
ode113, unless the input to the block does not change.

Data Type
Support

A Memory block accepts real or complex signals of any data type supported by
Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box
2-232

Memory

slref.book Page 233 M onday, Septem ber 27, 2004 3:20 PM
Initial condition
The output at the initial integration step. This must be set to 0 if the input
data type is user-defined.

Inherit sample time
Check this check box to cause the sample time to be inherited from the
driving block.

Direct feedthrough of input during linearization
Causes the block to output its input during linearization and trim. This
sets the block’s mode to direct feedthrough.

Characteristics Dimensionalized Yes

Direct Feedthrough No, except when Direct feedthrough of input
during linearization is enabled.

Sample Time Continuous, but inherited from the driving block if
the Inherit sample time check box is selected

Scalar Expansion Yes, of the Initial condition parameter

Zero Crossing No
2-233

Merge

slref.book Page 234 M onday, Septem ber 27, 2004 3:20 PM
2MergePurpose Combine multiple signals into a single signal

Library Signal Routing

Description The Merge block combines its inputs into a single output line whose value at
any time is equal to the most recently computed output of its driving blocks.
You can specify any number of inputs by setting the block’s Number of inputs
parameter.

Note Merge blocks facilitate creation of alternately executing subsystems.
See “Creating Alternately Executing Subsystems” for an application example.

A Merge block does not accept signals whose elements have been reordered.
For example, in the following diagram, the Merge block does not accept the
output of the Selector block because the Selector block interchanges the first
and fourth elements of the vector signal.

If the Allow unequal port widths parameter is not selected, the block accepts
only inputs of equal dimensions and outputs a signal of the same dimensions
as the inputs. If the Allow unequal port widths option is selected, the block
accepts scalars and vectors (but not matrices) having differing numbers of
elements. Further, the block allows you to specify an offset for each input signal
relative to the beginning of the output signal. The width of the output signal is

max(w1+o1, w2+o2, ... wn+on)

Merge

Merge
2-234

Merge

slref.book Page 235 M onday, Septem ber 27, 2004 3:20 PM
where w1, ... wn are the widths of the input signals and o1, ... on are the
offsets for the input signals. For example, the Merge block in the following
diagram merges signals v1 and v2 to produce signal v3.

In this example, the offset of v1 is 0 and the offset of v2 is 2, resulting in an
output signal six elements wide. The Merge block maps the elements of v1 to
the first two elements of v3 and the elements of v2 to the last four elements of
v3.

You can specify an initial output value by setting the block’s Initial output
parameter. If you do not specify an initial output and one or more of the driving
blocks do, the Merge block’s initial output equals the most recently evaluated
initial output of the driving blocks.

Merging S-Function Outputs
The Merge block does can merge a signal from an S-Function block only if the
memory used to store the S-Function block’s output is reusable. Simulink
displays an error message if you attempt to update or simulate a model that
connects a nonreusable port of an S-Function block to a Merge block. See
ssSetOutputPortReusable for more information.
2-235

Merge

slref.book Page 236 M onday, Septem ber 27, 2004 3:20 PM
Muxing Signals to be Merged
Instead of connecting signals directly to a Merge block, you can connect them
via a Mux block as illustrated in the following example.

This example connects three amplifiers to a Merge block via a Mux block. The
top and bottom amplifiers trigger on a rising pulse; the middle, on a falling
pulse. The trigger signal connected to the bottom amplifier has a phase delay
of .5 s compared to the trigger signal connected to the bottom amplifier. The
output of the Merge block at each time step equals that of the amplifier
triggered at that time step. Muxing the signals to be merged rather than
connecting them directly to the Merge block can result in a clearer diagram.

Data Type
Support

A Merge block accepts real or complex signals of any data type supported by
Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-236

Merge

slref.book Page 237 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Number of inputs
The number of input ports to merge.

Initial output
Initial value of output. If unspecified, the initial output equals the initial
output, if any, of one of the driving blocks.

Allow unequal port widths
Allows the block to accept inputs having different numbers of elements.

Input port offsets
Vector specifying the offset of each input signal relative to the beginning of
the output signal.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion No

Zero Crossing No
2-237

MinMax

slref.book Page 238 M onday, Septem ber 27, 2004 3:20 PM
2MinMaxPurpose Output the minimum or maximum input value

Library Math Operations

Description The MinMax block outputs either the minimum or the maximum element or
elements of the inputs. You can choose the function to apply by selecting one of
the choices from the Function parameter list.

If the block has one input port, the input must be a scalar or a vector. The block
outputs a scalar equal to the minimum or maximum element of the input
vector.

If the block has multiple input ports, the nonscalar inputs must all have the
same dimensions. The block expands any scalar inputs to have the same
dimensions as the nonscalar inputs. The block outputs a signal having the
same dimensions as the input. Each output element equals the minimum or
maximum of the corresponding input elements.

Data Type
Support

A MinMax block accepts and outputs real signals of any data type supported
by Simulink, except boolean.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Function
The function (min or max) to apply to the input.

Number of input ports
The number of inputs to the block.
2-238

MinMax

slref.book Page 239 M onday, Septem ber 27, 2004 3:20 PM
Enable zero crossing detection
Select to enable zero crossing detection to detect minimum and maximum
values. For more information, see “Zero Crossing Detection” in the Using
Simulink documentation.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion Of the inputs

Dimensionalized Yes
2-239

Model Info

slref.book Page 240 M onday, Septem ber 27, 2004 3:20 PM
2Model InfoPurpose Display revision control information in a model

Library Model-Wide Utilities

Description The Model Info block displays revision control information about a model as an
annotation block in the model’s block diagram. The following diagram
illustrates use of a Model Info block to display information about the vdp model.

A Model Info block can show revision control information embedded in the
model itself and/or information maintained by an external revision control or
configuration management system. A Model Info block’s dialog allows you to
specify the content and format of the text displayed by the block.

Data Type
Support

Not applicable.
2-240

Model Info

slref.book Page 241 M onday, Septem ber 27, 2004 3:20 PM
Dialog Box

The Model Info block dialog box includes the following fields:

Editable text. Enter the text to be displayed by the Model Info block in this field.
You can freely embed variables of the form %<propname>, where propname is
the name of a model or revision control system property, in the entered text.
The value of the property replaces the variable in the displayed text. For
example, suppose that the current version of the model is 1.1. Then the entered
text

Version %<ModelVersion>

appears as

Version 1.1

in the displayed text. The model and revision control system properties that
you can reference in this way are listed in the Model properties and
Configuration manager properties fields.

Model properties. Lists revision control properties stored in the model. Selecting
a property and then selecting the adjacent arrow button enters the
corresponding variable in the Editable text field. For example, selecting
CreatedBy enters %<CreatedBy%> in the Editable text field. See “Version
2-241

Model Info

slref.book Page 242 M onday, Septem ber 27, 2004 3:20 PM
Control Properties” for a description of the usage of the properties specified in
this field.

Configuration manager properties. This field appears only if you previously
specified an external configuration manager for this model on the MATLAB
Preferences dialog box for the model (see “Selecting and Viewing the Source
Control System” in the online documentation) or by setting the model’s
ConfigurationManager property. The field lists version control information
maintained by the external system that you can include in the Model Info
block. To include an item from the list, select it and then click the adjacent
arrow button.

Note The selected item does not appear in the Model Info block until you
check the model in or out of the repository maintained by the configuration
manager and you have closed and reopened the model.
2-242

Multi-Port Switch

slref.book Page 243 M onday, Septem ber 27, 2004 3:20 PM
2Multi-Port SwitchPurpose Choose between multiple block inputs

Library Simulink Signal Routing and Fixed-Point Blockset Select

Description The Multi-Port Switch block chooses between a number of inputs. The first
(top) input is called the control input, while the rest of the inputs are called
data inputs. The value of the control input determines which data input is
passed through to the output port.

If the control input is an integer value, then the specified data input is passed
through to the output. For example, suppose the Use zero-based indexing
parameter is not selected. If the control input is 1, then the first data input is
passed through to the output. If the control input is 2, then the second data
input is passed through to the output, and so on. If the control input is not an
integer value, the block first truncates the value to an integer by rounding to
floor. If the truncated control input is less than 1 or greater than the number
of input ports, an out-of-bounds error is returned.

You specify the number of data inputs with the Number of input ports
parameter. The data inputs can be scalar or vector. The block output is
determined by these rules:

• If you specify only one data input and that input is a vector, the block
behaves as an “index selector,” and not as a multi-port switch. The block
output is the vector element that corresponds to the value of the control
input.

• If you specify more than one data input, the block behaves like a multi-port
switch. The block output is the data input that corresponds to the value of
the control input. If at least one of the data inputs is a vector, the block
output is a vector. Any scalar inputs are expanded to vectors.

• If the inputs are scalar, the output is a scalar.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” in the Fixed-Point
Blockset documentation.

The Index Vector block, also in the Fixed-Point Blockset Select library, is
another implementation of the Multi-Port Switch block that has different
default parameter settings.

Multiport
Switch
2-243

Multi-Port Switch

slref.book Page 244 M onday, Septem ber 27, 2004 3:20 PM
Data type
support

The control and data inputs of a Multi-Port Switch block can be signals of any
data type supported by Simulink, except boolean. They can also be fixed-point
data types.

The control inputs must be real. The data inputs can be real or complex.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Number of input ports
Specify the number of data inputs to the block.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
2-244

Multi-Port Switch

slref.book Page 245 M onday, Septem ber 27, 2004 3:20 PM
Use zero based indexing
If selected, the block uses zero-based indexing. Otherwise, the block uses
one-based indexing.

Require all data port inputs to have same data type
Select to require all data port inputs to have the same data type.

Output data type mode
You can choose to inherit the output data type and scaling by
backpropagation or by an internal rule. The internal rule causes the output
of the block to have the same data type and scaling as the input with the
larger positive range.

Round integer calculations toward
Select the rounding mode for the fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving blocks
2-245

Multi-Port Switch

slref.book Page 246 M onday, Septem ber 27, 2004 3:20 PM
Scalar Expansion Yes

Zero Crossing No
2-246

Mux

slref.book Page 247 M onday, Septem ber 27, 2004 3:20 PM
2MuxPurpose Combine several input signals into a vector or bus output signal

Library Signal Routing

Description The Mux block combines its inputs into a single output. An input can be a
scalar, vector, or matrix signal. Depending on its inputs, the output of a Mux
block is a vector or a composite signal, i.e., a signal containing both matrix and
vector elements. If all of a Mux block’s inputs are vectors or vector-like, the
block’s output is a vector. A vector-like signal is any signal that is a scalar
(one-element vector), a vector, or a single-column or single-row matrix. If any
input is a non-vector-like matrix signal, the output of the Mux block is a bus
signal. Bus signals can drive only virtual blocks, e.g., Demux, Subsystem, or
Goto blocks.

The Mux block’s Number of Inputs parameter allows you to specify input
signal names and dimensionality as well as the number of inputs. You can use
any of the following formats to specify this parameter:

• Scalar

Specifies the number of inputs to the Mux block. When this format is used,
the block accepts signals of any dimensionality. Simulink assigns each input
the name signalN, where N is the input port number.

• Vector

The length of the vector specifies the number of inputs. Each element
specifies the dimensionality of the corresponding input. A positive value
specifies that the corresponding port can accept only vectors of that size. For
example, [2 3] specifies two input ports of sizes 2 and 3, respectively. If an
input signal width does not match the expected width, Simulink displays an
error message. A value of -1 specifies that the corresponding port can accept
vectors or matrices of any dimensionality.

• Cell array

The length of the cell array specifies the number of inputs. The value of each
cell specifies the dimensionality of the corresponding input. A scalar value N
specifies a vector of size N. A vector value [M N] specifies an M-by-N matrix.
A value of -1 means that the corresponding port can accept signals of any
dimensionality.
2-247

Mux

slref.book Page 248 M onday, Septem ber 27, 2004 3:20 PM
• Signal name list

You can enter a list of signal names separated by commas. Simulink assigns
each name to the corresponding port and signal. For example, if you enter
position,velocity, the Mux block will have two inputs, named position
and velocity.

Note Simulink hides the name of a Mux block when you copy it from the
Simulink block library to a model.

Data Type
Support

A Mux block accepts real or complex signals of any data type supported by
Simulink, as well as fixed-point data types. The Mux block supports
mixed-type vectors.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Number of inputs
The number and dimensionality of inputs. You can enter a
comma-separated list of signal names for this parameter field.
2-248

Mux

slref.book Page 249 M onday, Septem ber 27, 2004 3:20 PM
Display option
The appearance of the block icon in your model.

Display Option Appearance of Block in Model

none Mux appears inside block icon

signals Displays signal names next to each port

bar Displays the block icon in a solid foreground color
2-249

Outport

slref.book Page 250 M onday, Septem ber 27, 2004 3:20 PM
2OutportPurpose Create an output port for a subsystem or an external output

Library Ports & Subsystems, Sinks

Description Outport blocks are the links from a system to a destination outside the system.

Simulink assigns Outport block port numbers according to these rules:

• It automatically numbers the Outport blocks within a top-level system or
subsystem sequentially, starting with 1.

• If you add an Outport block, it is assigned the next available number.

• If you delete an Outport block, other port numbers are automatically
renumbered to ensure that the Outport blocks are in sequence and that no
numbers are omitted.

• If you copy an Outport block into a system, its port number is not
renumbered unless its current number conflicts with an Outport block
already in the system. If the copied Outport block port number is not in
sequence, you must renumber the block or you will get an error message
when you run the simulation or update the block diagram.

Outport Blocks in a Subsystem
Outport blocks in a subsystem represent outputs from the subsystem. A signal
arriving at an Outport block in a subsystem flows out of the associated output
port on that Subsystem block. The Outport block associated with an output
port on a Subsystem block is the block whose Port number parameter matches
the relative position of the output port on the Subsystem block. For example,
the Outport block whose Port number parameter is 1 sends its signal to the
block connected to the topmost output port on the Subsystem block.

If you renumber the Port number of an Outport block, the block becomes
connected to a different output port, although the block continues to send the
signal to the same block outside the subsystem.

When you create a subsystem by selecting existing blocks, if more than one
Outport block is included in the grouped blocks, Simulink automatically
renumbers the ports on the blocks.

1

Out1
2-250

Outport

slref.book Page 251 M onday, Septem ber 27, 2004 3:20 PM
The Outport block name appears in the Subsystem block icon as a port label.
To suppress display of the label, select the Outport block and choose Hide
Name from the Format menu.

Outport Blocks in a Conditionally Executed Subsystem
When an Outport block is in an enabled subsystem, you can specify what
happens to its output when the subsystem is disabled: it can be reset to an
initial value or held at its most recent value. The Output when disabled
pop-up menu provides these options. The Initial output parameter is the value
of the output before the subsystem executes and, if the reset option is chosen,
while the subsystem is disabled.

Outport Blocks in a Top-Level System
Outport blocks in a top-level system have two uses: to supply external outputs
to the workspace, which you can do by using either the Simulation
Parameters dialog box or the sim command, and to provide a means for
analysis functions to obtain output from the system.

• To supply external outputs to the workspace, use the Simulation
Parameters dialog box (see “Saving Output to the Workspace”) or the sim
command (see sim). For example, if a system has more than one Outport
block and the save format is array, the following command
[t,x,y] = sim(...);

writes y as a matrix, with each column containing data for a different
Outport block. The column order matches the order of the port numbers for
the Outport blocks.

If you specify more than one variable name after the second (state)
argument, data from each Outport block is written to a different variable.
For example, if the system has two Outport blocks, to save data from Outport
block 1 to speed and the data from Outport block 2 to dist, you could specify
this command:
[t,x,speed,dist] = sim(...);

• To provide a means for the linmod and trim analysis functions to obtain
output from the system (see “Running a Simulation”)
2-251

Outport

slref.book Page 252 M onday, Septem ber 27, 2004 3:20 PM
Data Type
Support

An Outport block accepts complex or real signals of any data type supported by
Simulink. An Outport block can also accept fixed-point data types if it is not a
root-level outport. The complexity and data type of the block’s output are the
same as those of its input. For a discussion on the data types supported by
Simulink, refer to “Data Types Supported by Simulink” in the Using Simulink
documentation.

The elements of a signal array connected to an Outport block can be of differing
complexity and data types except in the following circumstance: If the outport
is in a conditionally executed subsystem and the initial output is specified, all
elements of an input array must be of the same complexity and data types.

Typical Simulink data type conversion rules apply to an outport’s Initial
output parameter. If the initial output value is in the range of the block’s
output data type, Simulink converts the initial output to the output data type.
If the specified initial output is out of the range of the output data type,
Simulink halts the simulation and signals an error.

Parameters
and Dialog Box

Port number
Specify the port number of the Outport block.

Output when disabled
This option is enabled only if the Outport resides in an Enabled Subsystem.
It specifies what happens to the block output when the system is disabled.
2-252

Outport

slref.book Page 253 M onday, Septem ber 27, 2004 3:20 PM
Initial output
For conditionally executed subsystems, specify the block output before the
subsystem executes and while it is disabled.

Characteristics Dimensionalized Yes

Sample Time Inherited from driving block
2-253

Polynomial

slref.book Page 254 M onday, Septem ber 27, 2004 3:20 PM
2PolynomialPurpose Perform evaluation of polynomial coefficients on input values

Library Math Operations

Description The Polynomial block uses a coefficients parameter to evaluate a real
polynomial for the input value.

You define a set of polynomial coefficients in the form accepted by MATLAB's
polyval command. The block then calculates P(u) at each time step for the
input u. Inputs and coefficients must be real.

Data Type
Support

The Polynomial block accepts real signals of types double or single. The
Polynomial coefficients parameter must be of the same type as the inputs.
The output data type is set to the input data type.

Parameters
and Dialog Box

Polynomial coefficients
Values are in coefficients of a polynomial in MATLAB polyval form, with the
first coefficient representing xN, then decreasing in order until the last
coefficient, which represents the constant for the polynomial. See polyval in
the MATLAB documentation for more information.
2-254

Polynomial

slref.book Page 255 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-255

Prelook-Up Index Search

slref.book Page 256 M onday, Septem ber 27, 2004 3:20 PM
2Prelook-Up Index SearchPurpose First stage of high-performance constant or linear interpolation that performs
index search and interval fraction calculation for input on a breakpoint set

Library Look-Up Tables

Description The PreLook-Up Index Search block calculates the indices and interval
fractions for the input value in the Breakpoint data parameter. By using this
combination of blocks, you can replace multiple Interpolation (n-D) blocks with
one set of PreLook-Up Index Search blocks. In models that have many
interpolation blocks simulation performance can be greatly increased.

To use this block, you must define a set of breakpoint values. In normal use,
this breakpoint data set corresponds to one dimension of a Table data
parameter in an Interpolation (n-D) using PreLook-Up block. The block
generates a pair of outputs for each input value by calculating the index of the
breakpoint set element that is less than or equal to the input value and the
resulting fractional value that is a number 0 ≤ f < 1 that represents the input
value's normalized position between the index and the next index value for
in-range input.

For example, if the breakpoint data is

[0 5 10 20 50 100]

and the input value u is 55, the (index, fraction) pair is (4, 0.1), denoted as k
and f on the block icon. Note that the index value is zero-based.

Note The interval fraction can be negative or greater than 1 for out-of-range
input. See the documentation for the block’s Process out of range input
parameter for more information.

Data Type
Support

A PreLook-Up Index Search block accepts signals of types double or single,
but for any given block the inputs must all be of the same type. The
Breakpoint data parameter must be of the same type as the inputs. The
output data type is set to the input data type.
2-256

Prelook-Up Index Search

slref.book Page 257 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Breakpoint data
The set of numbers to search.

Index search method
Binary search, evenly spaced points, or linear search. Use linear search in
combination with Begin index search using previous index result for
higher performance than a binary search when the input values do not
change much from one time step to the next. For large breakpoint sets, a
linear search can be very slow if the input value changes by more than a
few intervals from one time step to the next.

Begin index search using previous index result
Select this option if you want the block to start its search using the index
that was found on the previous time step. For inputs that change slowly
with respect to the interval size, you can realize a large performance gain.

Output only the index
If this block is not being used to feed an Interpolation (n-D) Using
PreLook-Up block, the interval fraction output can be dropped and the
resulting index value output is a uint32 instead.

Process out of range input
2-257

Prelook-Up Index Search

slref.book Page 258 M onday, Septem ber 27, 2004 3:20 PM
Specifies how to handle out-of-range input. Options include:

• Clip to Range

If the input is less than the first breakpoint, return the index of the first
breakpoint (i.e., 0) and 0 for the interval fraction. If the input is greater
than the last breakpoint, return the index of the next-to-the-last
breakpoint and 1 for the interval fraction. For example, suppose the range
is [1 2 3] and this option is selected. Then, if the input is 0.5, the block
returns [0 0]; if the input is 3.5, the block returns [1 1].

• Linear Extrapolation

If the input is less than the first breakpoint, return the index of the first
breakpoint and an interval fraction representing the linear distance from
the input to the first breakpoint. If the input is greater than the last
breakpoint, return the index of the next-to-the-last breakpoint and an
interval fraction that represents the linear distance from the
next-to-the-last breakpoint to the input. For example, suppose the range is
[1 2 3] and this option is selected. Then, if the input is 0.5, the block
returns [0 -0.5]; if the input is 3.5, the block returns [1 1.5].

Action for out of range input
Specifies whether to produce a warning or error message if the input is out
of range. The options are None (the default, no warning or error message),
Warning (display a warning message in the MATLAB command window
and continue the simulation), Error (halt the simulation and display an
error message in the Simulink Diagnostic Viewer).

Characteristics
Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No
2-258

Product

slref.book Page 259 M onday, Septem ber 27, 2004 3:20 PM
2ProductPurpose Multiply or divide inputs

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Product block performs multiplication or division of its inputs.

This block produces outputs using either element-wise or matrix
multiplication, depending on the value of the Multiplication parameter. You
specify the operations with the Number of inputs parameter. Multiply(*) and
divide(/) characters indicate the operations to be performed on the inputs:

• If there are two or more inputs, then the number of characters must equal
the number of inputs. For example, “*/*” requires three inputs. For this
example, if the Multiplication parameter is set to Element-wise, the block
divides the elements of the first (top) input by the elements of the second
(middle) input, and then multiplies by the elements of the third (bottom)
input. In this case, all nonscalar inputs to this block must have the same
dimensions.

If, however, the Multiplication parameter is set to Matrix, the block output
is the matrix product of the inputs marked “*” and the inverse of inputs
marked “/”, with the order of operations following the entry in the Number
of inputs parameter. The dimensions of the inputs must be such that the
matrix product is defined.

Note To perform a dot product on input vectors, use the Dot Product block.

• If only multiplication of inputs is required, then a numeric parameter value
equal to the number of inputs can be supplied instead of “*” characters. This
may be used in conjunction with either element-wise or matrix
multiplication.

• If a single vector is input and the Multiplication parameter is set to
Element-wise, then a single “*” will cause the block to output the scalar
product of the vector elements. A single “/” will cause the block to output the
inverse of the scalar product of the vector elements.

• If a single matrix is input and the Multiplication parameter is set to
Element-wise, then a single “*” or “/” will cause the block to error out. If,

Product

Product
2-259

Product

slref.book Page 260 M onday, Septem ber 27, 2004 3:20 PM
however, the Multiplication parameter is set to Matrix, then a single “*”
will cause the block to output the matrix unchanged, and a single “/” will
cause the block to output the inverse of the matrix.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” in the Fixed-Point
Blockset documentation.

Data Type
Support

The Product block accepts real or complex signals of any data type supported
by Simulink, except boolean. The Product block also supports fixed-point data
types. All input signals must be of the same data type.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Number of inputs
Enter the number of inputs or a combination of “*” and “/” symbols. See
“Description” above for a complete discussion of this parameter.

Multiplication
Specify element-wise or matrix multiplication. See “Description” above for
a complete discussion of this parameter.
2-260

Product

slref.book Page 261 M onday, Septem ber 27, 2004 3:20 PM
Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.

Require all inputs to have same data type
Select this parameter to require that all inputs must have the same data
type.

Output data type mode
Specify the output data type and scaling to be the same as the first input,
or inherit the data type and scaling by an internal rule or by
backpropagation. You can also choose a built-in data type from the
drop-down list. Lastly, if you choose Specify via dialog, the Output
data type, Output scaling value, and Lock output scaling against
changes by the autoscaling tool parameters become visible.
2-261

Product

slref.book Page 262 M onday, Septem ber 27, 2004 3:20 PM
If you select Inherit via internal rule for this parameter, Simulink
chooses a combination of output scaling and data type that requires the
smallest amount of memory consistent with accommodating the output
range and maintaining the output precision (and avoiding underflow in the
case of division operations). If the Production hardware characteristics
parameter on the Advanced pane of the Simulation Parameters dialog is
set to Unconstrained integer sizes, Simulink chooses the data type
without regard to hardware constraints. If the parameter is set to
Microprocessor, Simulink chooses the smallest available hardware data
type capable of meeting range, precision, and underflow constraints. For
example, if the block multiplies inputs of type int8 and int16 and
Unconstrained integer sizes is specified, the output data type is
sfix24. If Microprocessor is specified and the microprocessor supports
8-bit, 16-bit, and 32-bit words, the output data type is int32. If none of the
word lengths provided by the target microprocessor can accommodate the
output range, Simulink displays an error message in the Simulink
Diagnostic Viewer.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Output data type
mode parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Output
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, Output scaling is locked. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.
2-262

Product

slref.book Page 263 M onday, Septem ber 27, 2004 3:20 PM
Conversions
and Operations

The Product block first performs the specified multiply or divide operations on
the inputs, and then converts the results to the output data type using the
specified rounding and overflow modes. Refer to “Rules for Arithmetic
Operations” in the Fixed-Point Blockset documentation for more information
about the rules that this block obeys when performing fixed-point operations.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Zero Crossing No
2-263

Probe

slref.book Page 264 M onday, Septem ber 27, 2004 3:20 PM
2ProbePurpose Output a signal’s attributes, including width, dimensionality, sample time,
and/or complex signal flag

Library Signal Attributes

Description The Probe block outputs selected information about the signal on its input. The
block can output the input signal’s width, dimensionality, sample time, and/or
a flag indicating whether the input is a complex-valued signal. The block has
one input port. The number of output ports depends on the information that
you select for probing, that is, signal dimensionality, sample time, and/or
complex signal flag. Each probed value is output as a separate signal on a
separate output port. The block accepts real or complex-valued signals of any
built-in data type. It outputs signals of type double. During simulation, the
block’s icon displays the probed data.

Data Type
Support

A Probe block accepts and outputs any data type supported by Simulink, as
well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Probe width
If selected, output the width (number of elements) of the probed signal.

Probe sample time
If selected, output the sample time of the probed signal.

Probe complex signal
If selected, output 1 if the probed signal is complex; otherwise, 0.
2-264

Probe

slref.book Page 265 M onday, Septem ber 27, 2004 3:20 PM
Probe signal dimensions
If selected, output the dimensions of the probed signal.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No
2-265

Pulse Generator

slref.book Page 266 M onday, Septem ber 27, 2004 3:20 PM
2Pulse GeneratorPurpose Generate square wave pulses at regular intervals

Library Sources

Description The Pulse Generator block generates square wave pulses at regular intervals.
The block’s waveform parameters, Amplitude, Pulse Width, Period, and
Phase Delay, determine the shape of the output waveform. The following
diagram shows how each parameter affects the waveform.

The Pulse Generator can emit scalar, vector, or matrix signals of any real data
type. To cause the block to emit a scalar signal, use scalars to specify the
waveform parameters. To cause the block to emit a vector or matrix signal, use
vectors or matrices, respectively, to specify the waveform parameters. Each
element of the waveform parameters affects the corresponding element of the
output signal. For example, the first element of a vector amplitude parameter
determines the amplitude of the first element of a vector output pulse. All the
waveform parameters must have the same dimensions after scalar expansion.
The data type of the output is the same as the data type of the Amplitude
parameter.

The block’s Pulse type parameter allows you to specify whether the block’s
output is time-based or sample-based. If you select sample-based, the block
computes its outputs at fixed intervals that you specify. If you select
time-based, Simulink computes the block’s outputs only at times when the
output actually changes. This can result in fewer computations being required
to compute the block’s output over the simulation time period.

Am
pl

itu
de

PeriodPhase

Width
2-266

Pulse Generator

slref.book Page 267 M onday, Septem ber 27, 2004 3:20 PM
Depending on the pulse’s waveform characteristics, the intervals between
changes in the block’s output can vary. For this reason, Simulink cannot use a
fixed solver to compute the output of a time-based pulse generator. Simulink
allows you to specify a fixed-step solver for models that contain time-based
pulse generators. However, in this case, Simulink computes a fixed sample
time for the time-based pulse generators. It then simulates the time-based
pulse generators as sample-based.

Note If you use a fixed-step solver and the Pulse type is time-based, you
must choose the step size such that the period, phase delay, and pulse width
(in seconds) are integer multiples of the step size. For example, suppose that
the period is 4 seconds, the pulse width is 75% (i.e., 3 s), and the phase delay is
1 s. In this case, the computed sample time is 1 s. Therefore, you must choose
a fixed-step size that is 1 or that divides 1 exactly (e.g., 0.25). You can
guarantee this by setting the fixed-step solver’s step size to auto on the
Simulation Parameters dialog box.

If you select time-based as the block’s pulse type, you must specify the pulse’s
phase delay and period in units of seconds. If you specify sample-based, you
must specify the block’s sample time in seconds, using the Sample Time
parameter, then specify the block’s phase delay and period as integer multiples
of the sample time. For example, suppose that you specify a sample time of 0.5
second. And suppose you want the pulse to repeat every two seconds. In this
case, you would specify 4 as the value of the block’s Period parameter.

Data Type
Support

A Pulse Generator block outputs real signals of any data type supported by
Simulink. The data type of the output signal is the same as that of the
Amplitude parameter.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-267

Pulse Generator

slref.book Page 268 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.

Pulse type
The pulse type for this block: time-based or sample-based. The default is
time-based.

Amplitude
The pulse amplitude. The default is 1.

Period
The pulse period specified in seconds if the pulse type is time-based or as
number of sample times if the pulse type is sample-based. The default is 2.

Pulse width
The duty cycle specified as the percentage of the pulse period that the
signal is on if time-based or as number of sample times if sample-based.
The default is 50 percent.

Phase delay
2-268

Pulse Generator

slref.book Page 269 M onday, Septem ber 27, 2004 3:20 PM
The delay before the pulse is generated specified in seconds if the pulse
type is time-based or as number of sample times if the pulse type is
sample-based. The default is 0 seconds.
2-269

Pulse Generator

slref.book Page 270 M onday, Septem ber 27, 2004 3:20 PM
Sample Time
The length of the sample time for this block in seconds. This parameter
appears only if the block’s pulse type is sample-based. See “Specifying
Sample Time” for more information.

Interpret vector parameters as 1-D
If this option is selected and the other parameters are one-row or
one-column matrices, after scalar expansion, the block outputs a 1-D signal
(vector). Otherwise the output dimensionality is the same as that of the
other parameters.

Characteristics Sample Time Inherited

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing No
2-270

Quantizer

slref.book Page 271 M onday, Septem ber 27, 2004 3:20 PM
2QuantizerPurpose Discretize input at a specified interval

Library Discontinuities

Description The Quantizer block passes its input signal through a stair-step function so
that many neighboring points on the input axis are mapped to one point on the
output axis. The effect is to quantize a smooth signal into a stair-step output.
The output is computed using the round-to-nearest method, which produces an
output that is symmetric about zero.

y = q * round(u/q)

where y is the output, u the input, and q the Quantization interval parameter.

Data Type
Support

A Quantizer block accepts and outputs real or complex signals of type single
or double.

Parameters
and Dialog Box

Quantization interval
The interval around which the output is quantized. Permissible output
values for the Quantizer block are n*q, where n is an integer and q the
Quantization interval. The default is 0.5.

Treat as gain when linearizing
Simulink by default treats the Quantizer block as unity gain when
linearizing. This is the large signal linearization case. If you clear this box,
the linearization routines assume the small signal case and set the gain to
zero.
2-271

Quantizer

slref.book Page 272 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of parameter

Dimensionalized Yes

Zero Crossing No
2-272

Ramp

slref.book Page 273 M onday, Septem ber 27, 2004 3:20 PM
2RampPurpose Generate constantly increasing or decreasing signal

Library Sources

Description The Ramp block generates a signal that starts at a specified time and value and
changes by a specified rate. The block’s Slope, Start time, Duty Cycle, and
Initial output parameters determine the characteristics of the output signal.
All must have the same dimensions after scalar expansion.

Data Type
Support

A Ramp block outputs signals of type double.

Parameters
and Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.

Slope
The rate of change of the generated signal. The default is 1.

Start time
The time at which the signal begins to be generated. The default is 0.

Initial output
The initial value of the signal. The default is 0.

Interpret vector parameters as 1-D
If this option is selected and the other parameters are one-row or one-column
matrices, after scalar expansion, the block outputs a 1-D signal (vector).
2-273

Ramp

slref.book Page 274 M onday, Septem ber 27, 2004 3:20 PM
Otherwise, the output dimensionality is the same as that of the other
parameters.

Characteristics Sample Time Inherited from driven block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes
2-274

Random Number

slref.book Page 275 M onday, Septem ber 27, 2004 3:20 PM
2Random NumberPurpose Generate normally distributed random numbers

Library Sources

Description The Random Number block generates normally distributed random numbers.
The seed is reset to the specified value each time a simulation starts.

By default, the sequence produced has a mean of 0 and a variance of 1,
although you can vary these parameters. The sequence of numbers is
repeatable and can be produced by any Random Number block with the same
seed and parameters. To generate a vector of random numbers with the same
mean and variance, specify the Initial seed parameter as a vector.

To generate uniformly distributed random numbers, use the Uniform Random
Number block.

Avoid integrating a random signal, because solvers are meant to integrate
relatively smooth signals. Instead, use the Band-Limited White Noise block.

All the block’s numeric parameters must be of the same dimension after scalar
expansion.

Data Type
Support

A Random Number block accepts and outputs signals of type double.

Parameters
and Dialog Box
2-275

Random Number

slref.book Page 276 M onday, Septem ber 27, 2004 3:20 PM
Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.

Mean
The mean of the random numbers. The default is 0.

Variance
The variance of the random numbers. The default is 1.

Initial seed
The starting seed for the random number generator. The seed must be 0 or
a positive integer. The default is 0.

Sample time
The time interval between samples. The default is 0, causing the block to
have continuous sample time. See “Specifying Sample Time” in the online
documentation for more information.

Interpret vector parameters as 1-D
If this option is selected and the other parameters are one-row or
one-column matrices, after scalar expansion, the block outputs a 1-D signal
(vector). Otherwise, the output dimensionality is the same as that of the
other parameters.

Characteristics Sample Time Continuous or discrete

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing No
2-276

Rate Limiter

slref.book Page 277 M onday, Septem ber 27, 2004 3:20 PM
2Rate LimiterPurpose Limit the rate of change of a signal

Library Discontinuities

Description The Rate Limiter block limits the first derivative of the signal passing through
it. The output changes no faster than the specified limit. The derivative is
calculated using this equation.

u(i) and t(i) are the current block input and time, and y(i-1) and t(i-1) are the
output and time at the previous step. The output is determined by comparing
rate to the Rising slew rate and Falling slew rate parameters:

• If rate is greater than the Rising slew rate parameter (R), the output is
calculated as

• If rate is less than the Falling slew rate parameter (F), the output is
calculated as

• If rate is between the bounds of R and F, the change in output is equal to the
change in input:

Data Type
Support

A Rate Limiter block accepts and outputs signals of type double.

Parameters
and Dialog Box

rate u i() y i 1–()–
t i() t i 1–()–
----------------------------------=

y i() ∆t R y i 1–()+⋅=

y i() ∆t F y i 1–()+⋅=

y i() u i()=
2-277

Rate Limiter

slref.book Page 278 M onday, Septem ber 27, 2004 3:20 PM
Rising slew rate
The limit of the derivative of an increasing input signal.

Falling slew rate
The limit of the derivative of a decreasing input signal.

Characteristics Direct Feedthrough Yes

Sample Time Continuous

Scalar Expansion Of input and parameters

Dimensionalized Yes

Zero Crossing No
2-278

Rate Transition

slref.book Page 279 M onday, Septem ber 27, 2004 3:20 PM
2Rate TransitionPurpose Handle transfer of data between blocks operating at different rates

Library Signal Attributes

Description Transfers data from the output of a block operating at one rate to the input of
another block operating at a different rate. The Rate Transition block’s
parameters allows you to specify options that trade data integrity and
deterministic transfer for faster response and/or lower memory requirements.

Note See “Data Transfer Problems” in the online Real-Time Workshop
documentation for a discussion of data integrity and deterministic data
transfer.

In particular, the block supports the following options:

• Deterministic transfer of data with data integrity between blocks operating
at different speeds at the cost of maximum latency of data transfer This is
the default option.

• Nondeterministic data transfer with minimum latency and assured data
integrity but increased memory requirements

To specify this option, check the Ensure data integrity during data
transfer parameter and uncheck the Ensure deterministic data transfer
parameter.

• Minimum latency and target size at the cost of nondeterministic data
transfer and possible loss of data integrity

To specify this option, uncheck the Ensure data integrity during data
transfer and Ensure deterministic data transfer parameters.

See “Sample Rate Transitions” in the online Real-Time Workshop
documentation for more information.
2-279

Rate Transition

slref.book Page 280 M onday, Septem ber 27, 2004 3:20 PM
Note The Zero-Order Hold and Unit Delay blocks also enable transfer of data
between blocks operating at different rates. However, you should use the Rate
Transition block for this purpose because it is designed specifically for this
purpose, offers a wider range of options, and is easier to use.

Data Type
Support

A Rate Transition block accepts signals of any data type supported by
Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Ensure data integrity during data transfer
Selecting this option results in generation of code that ensures the integrity
of data transferred by the Rate Transition block. If this option is selected
and the transfer is nondeterministic (see Ensure deterministic data
transfer option below), the generated code uses double-buffering to
prevent the fast block from interrupting the data transfer. Otherwise the
generated code uses a copy operation to effect the data transfer. The copy
operation consumes less memory than double-buffering but is also
interruptible and hence can lead to loss of data during nondeterministic
data transfers. Thus, you should select this option if you want the
generated code to operate both with maximum responsiveness (i.e.,
nondeterministically) and assured data integrity. See “Rate Transition
2-280

Rate Transition

slref.book Page 281 M onday, Septem ber 27, 2004 3:20 PM
Block Options” in the online Real-Time Workshop documentation for more
information.

Ensure deterministic data transfer (maximum delay)
Selecting this option causes code generation to generate code that transfers
data at the sample rate of the slower block, i.e., deterministically. If this
option is not selected, data transfers occur as soon as new data is available
from the source block and the receiving block is ready to receive the data.
This avoids the need to delay transfers, thus ensuring that the system
operates with maximum responsiveness. However, it also means that
transfers can occur unpredictably, which is undesirable in some
applications. See “Rate Transition Block Options” in the online Real-Time
Workshop documentation for more information.

Data rate transition
Select Slow to fast if the block connected to the input of the Rate
Transition block operates at a slower rate than the block connected to the
Rate Transition block. Otherwise, select Fast to slow.

Initial condition
This parameter applies only to Slow to fast transitions. It specifies the
Rate Transition’s initial output at the beginning of a transition when there
is not yet any output from the slow block connected to the Rate Transition
block’s input.

Characteristics Direct Feedthrough No for slow-to-fast transitions that are protected, i.e.,
for which you have checked the Ensure data
integrity during data transfer option; otherwise,
yes.

Sample Time This block supports discrete-to-discrete and
discrete-to-continuous transitions.

Scalar Expansion Of input.

Dimensionalized Yes

Zero Crossing No
2-281

Real-Imag to Complex

slref.book Page 282 M onday, Septem ber 27, 2004 3:20 PM
2Real-Imag to ComplexPurpose Convert real and/or imaginary inputs to a complex signal

Library Math Operations

Description The Real-Imag to Complex block converts real and/or imaginary inputs to a
complex-valued output signal.

The inputs can both be arrays (vectors or matrices) of equal dimensions, or one
input can be an array and the other a scalar. If the block has an array input,
the output is a complex array of the same dimensions. The elements of the real
input are mapped to the real parts of the corresponding complex output
elements. The imaginary input is similarly mapped to the imaginary parts of
the complex output signals. If one input is a scalar, it is mapped to the
corresponding component (real or imaginary) of all the complex output signals.

The input signals and real or imaginary output parameter can be of any data
type supported by Simulink, except boolean. They can also be fixed-point data
types. The output is of the same type as the input or parameter that determines
the output.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Data Type
Support

See the preceding description.

Parameters
and Dialog Box

Input
Specifies the kind of input: a real input, an imaginary input, or both.
2-282

Real-Imag to Complex

slref.book Page 283 M onday, Septem ber 27, 2004 3:20 PM
Real (Imag) part
If the input is a real-part signal, this parameter specifies the constant
imaginary part of the output signal. If the input is the imaginary part, this
parameter specifies the constant real part of the output signal. Note that
the title of this field changes to reflect its usage.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of the input when the function requires two inputs

Dimensionalized Yes

Zero Crossing No
2-283

Relational Operator

slref.book Page 284 M onday, Septem ber 27, 2004 3:20 PM
2Relational OperatorPurpose Perform the specified relational operation on the inputs

Library Simulink Math Operations and Fixed-Point Blockset Logic & Comparison

Description The Relational Operator block performs the specified comparison of its two
inputs.

The relational operator connecting the two inputs is selected with the
Relational Operator parameter. The block icon updates to display the selected
operator. The supported operations are given below.

You can specify inputs as scalars, arrays, or a combination of a scalar and an
array:

• For scalar inputs, the output is a scalar.

• For array inputs, the output is an array of the same dimensions, where each
element is the result of an element-by-element comparison of the input
arrays.

• For mixed scalar/array inputs, the output is an array, where each element is
the result of a comparison between the scalar and the corresponding array
element.

The output data type is specified with the Output data type mode and Output
data type parameters. The output equals 1 for TRUE and 0 for FALSE.

<=

Relational
Operator

Operation Description

== TRUE if the first input is equal to the second input

~= TRUE if the first input is not equal to the second input

< TRUE if the first input is less than the second input

<= TRUE if the first input is less than or equal to the second
input

>= TRUE if the first input is greater than or equal to the
second input

> TRUE if the first input is greater than the second input
2-284

Relational Operator

slref.book Page 285 M onday, Septem ber 27, 2004 3:20 PM
Note The output data type selected should represent zero exactly. Data types
that satisfy this condition include signed and unsigned integers and any
floating-point data type.

Data Type
Support

A Relational Operator block accepts real or complex signals of any data type
supported by Simulink, as well as fixed-point data types. However, if the
Output data type mode parameter is set to Logical, the input may only be
boolean or double. One input can be real and the other complex if the operator
is == or !=.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Relational Operator
Designate the relational operator used to compare the two inputs.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
2-285

Relational Operator

slref.book Page 286 M onday, Septem ber 27, 2004 3:20 PM
Require all inputs to have same data type
Select to require inputs to have the same data type.

Output data type mode
Set the output data type to boolean, or choose to specify the data type
through the Output data type parameter.

Alternatively, you can select Logical to have the output data type
determined by the Boolean Logic Signals parameter in the Advanced tab
of the Simulink Simulation Parameters Interface. If you select Logical
and Boolean Logic Signals is on, then the output data type is always
boolean. If you select Logical and Boolean Logic Signals is off, then the
output data type will match the input data type is always double.

Output data type
Specify the output data type. You should only use data types that represent
zero exactly. Data types that satisfy this condition include signed and
unsigned integers and any floating-point data type. This parameter is only
visible if Specify via dialog is selected for the Output data type mode
parameter.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.
2-286

Relational Operator

slref.book Page 287 M onday, Septem ber 27, 2004 3:20 PM
Conversions
and Operations

The input with the smaller positive range is converted to the data type of the
other input offline using round-to-nearest and saturation. This conversion is
performed prior to comparison. Refer to “Parameter Conversions” in the
Fixed-Point Blockset documentation for more information about parameter
conversions.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of inputs

Zero Crossing No, unless Enable zero crossing detection is
selected.
2-287

Relay

slref.book Page 288 M onday, Septem ber 27, 2004 3:20 PM
2RelayPurpose Switch output between two constants

Library Simulink Discontinuities and Fixed-Point Blockset Nonlinear

Description The Relay block allows its output to switch between two specified values. When
the relay is on, it remains on until the input drops below the value of the
Switch off point parameter. When the relay is off, it remains off until the
input exceeds the value of the Switch on point parameter. The block accepts
one input and generates one output.

The Switch on point value must be greater than or equal to the Switch off
point. Specifying a Switch on point value greater than the Switch off point
value models hysteresis, whereas specifying equal values models a switch with
a threshold at that value.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” in the Fixed-Point
Blockset documentation.

Data Type
Support

The Relay block accepts real or complex signals of any data type supported by
Simulink, except boolean. It also accepts fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Relay
2-288

Relay

slref.book Page 289 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Switch on point
The “on” threshold for the relay.

Switch off point
The “off” threshold for the relay.

Output when on
The output when the relay is on.

Output when off
The output when the relay is off.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
2-289

Relay

slref.book Page 290 M onday, Septem ber 27, 2004 3:20 PM
Output data type mode
Specify the output data type and scaling to be the same as the inputs, or
inherit the data type and scaling by backpropagation. Lastly, if you choose
Specify via dialog, the Output data type, Output scaling value, and
Parameter Scaling parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Output data type
mode parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Output
data type mode parameter, and is only enabled if Use specified
scaling is selected for the Parameter Scaling parameter.
2-290

Relay

slref.book Page 291 M onday, Septem ber 27, 2004 3:20 PM
Parameter Scaling

• Use Specified Scaling—This mode allows you to specify the output scaling
in the Output scaling value parameter

• Best Precision: Vector-wise—This mode produces a common binary
point for each element of the output vector based on the best precision for the
largest value of the vector.

This parameter is only visible if Specify via dialog is selected for the
Output data type mode parameter.

Enable zero crossing detection
Select to enable zero crossing detection to detect switch-on and switch-off
points. For more information, see “Zero Crossing Detection” in the Using
Simulink documentation.

Conversions
and Operations

The Switch on point and Switch off point parameters are converted to the
input data type offline using round-to-nearest and saturation.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes
2-291

Repeating Sequence

slref.book Page 292 M onday, Septem ber 27, 2004 3:20 PM
2Repeating SequencePurpose Generate an arbitrarily shaped periodic signal

Library Sources

Description The Repeating Sequence block outputs a periodic scalar signal having a
waveform that you specify. You can specify any waveform, using the block
dialog’s Time values and Output values parameters. The Times value
parameter specifies a vector of sample times. The Output values parameter
specifies a vector of signal amplitudes at the corresponding sample times.
Together, the two parameters specify a sampling of the output waveform at
points measured from the beginning of the interval over which the waveform
repeats (i.e., the signal’s period). For example, by default, the Time values and
Output values parameters are both set to [0 2]. This default setting specifies
a sawtooth waveform that repeats every 2 seconds from the start of the
simulation and has a maximum amplitude of 2. The Repeating Sequence block
uses linear interpolation to compute the value of the waveform between the
specified sample points.

Data Type
Support

A Repeating Sequence block outputs real signals of type double.

Parameters
and Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.

Time values
A vector of monotonically increasing time values. The default is [0 2].

Output values
A vector of output values. Each corresponds to the time value in the same
column. The default is [0 2].
2-292

Repeating Sequence

slref.book Page 293 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Sample Time Continuous

Scalar Expansion No

Dimensionalized No

Zero Crossing No
2-293

Reshape

slref.book Page 294 M onday, Septem ber 27, 2004 3:20 PM
2ReshapePurpose Change the dimensionality of a signal

Library Math Operations

Description The Reshape block changes the dimensionality of the input signal to a
dimensionality that you specify, using the block’s Output dimensionality
parameter. For example, you can use the block to change an N-element vector
to a 1-by-N or N-by-1 matrix signal, and vice versa.

The Output dimensionality parameter lets you select any of the following
output options.

Output
Dimensionality Description

1-D array Converts a matrix (2-D array) to a vector (1-D array)
array signal. The output vector consists of the first
column of the input matrix followed by the second
column, etc. (This option leaves a vector input
unchanged.)

Column vector Converts a vector or matrix input signal to a column
matrix, i.e., an M-by-1 matrix, where M is the number
of elements in the input signal. For matrices, the
conversion is done in column-major order.
2-294

Reshape

slref.book Page 295 M onday, Septem ber 27, 2004 3:20 PM
Data Type
Support

The Reshape block accepts and outputs signals of any data type supported by
Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Output dimensionality
The dimensionality of the output signal.

Row vector Converts a vector or matrix input signal to a row
matrix, i.e., a 1-by-N matrix where N is the number of
elements in the input signal. For matrices, the
conversion is done in column-major order.

Customize Converts the input signal to an output signal whose
dimensions you specify, using the Output dimensions
parameter. The value of the Output dimensions
parameter can be a one- or two-element vector. A value
of [N] outputs a vector of size N. A value of [M N]
outputs an M-by-N matrix. The number of elements of
the input signal must match the number of elements
specified by the Output dimensions parameter. For
matrices, the conversion is done in column-major order.

Output
Dimensionality Description
2-295

Reshape

slref.book Page 296 M onday, Septem ber 27, 2004 3:20 PM
Output dimensions
Specifies a custom output dimensionality. This option is enabled only if you
select Customize as the value of the Output dimensionality parameter.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No
2-296

Rounding Function

slref.book Page 297 M onday, Septem ber 27, 2004 3:20 PM
2Rounding FunctionPurpose Apply a rounding function to a signal

Library Math Operations

Description The Rounding Function block applies a rounding function to the input signal to
produce the output signal.

You can select one of the following rounding functions from the Function list:

• floor

Rounds each element of the input signal to the nearest integer value towards
minus infinity.

• ceil

Rounds each element of the input signal to the nearest integer towards
positive infinity.

• round

Rounds each element of the input signal to the nearest integer.
• fix

Rounds each element of the input signal to the nearest integer towards zero.

The name of the selected function appears on the block icon.

The input signal can be a scalar, vector, or matrix signal having real- or
complex-valued elements of type double. The output signal has the same
dimensions, data type, and numeric type as the input. Each element of the
output signal is the result of applying the selected rounding function to the
corresponding element of the input signal.

Use the Rounding Function block instead of the Fcn block when you want
vector or matrix output, because the Fcn block can produce only scalar output.

Data Type
Support

A Rounding Function block accepts and outputs real signals of type double or
single.
2-297

Rounding Function

slref.book Page 298 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Function
The rounding function.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No
2-298

Saturation

slref.book Page 299 M onday, Septem ber 27, 2004 3:20 PM
2SaturationPurpose Limit the range of a signal

Library Simulink Discontinuities and Fixed-Point Blockset Nonlinear

Description The Saturation block imposes upper and lower bounds on a signal. When the
input signal is within the range specified by the Lower limit and Upper limit
parameters, the input signal passes through unchanged. When the input
signal is outside these bounds, the signal is clipped to the upper or lower bound.

When the Lower limit and Upper limit parameters are set to the same value,
the block outputs that value.

Data Type
Support

A Saturation block accepts real signals of any data type supported by Simulink,
except boolean. It also accepts fixed-point data types. The output data type is
the same as the input data type.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Upper limit
Specify the upper bound on the input signal. When the input signal to the
Saturation block is above this value, the output of the block is clipped to
this value.

Saturation
2-299

Saturation

slref.book Page 300 M onday, Septem ber 27, 2004 3:20 PM
Lower limit
Specify the lower bound on the input signal. When the input signal to the
Saturation block is below this value, the output of the block is clipped to
this value.

Treat as gain when linearizing
Linearization commands in Simulink treat this block as a gain in state
space. Select this parameter to cause the linearization commands to treat
the gain as 1; otherwise, the commands treat the gain as 0.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Conversions
and Operations

Both the Upper limit and Lower limit parameters are converted to the input
data type offline using round-to-nearest and saturation.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of parameters and input

Zero Crossing No, unless Enable zero crossing detection is
selected
2-300

Scope, Floating Scope

slref.book Page 301 M onday, Septem ber 27, 2004 3:20 PM
2Scope, Floating ScopePurpose Display signals generated during a simulation

Library Sinks

Description The Scope block displays its input with respect to simulation time. The Scope
block can have multiple axes (one per port); all axes have a common time range
with independent y-axes. The Scope allows you to adjust the amount of time
and the range of input values displayed. You can move and resize the Scope
window and you can modify the Scope’s parameter values during the
simulation.

When you start a simulation, Simulink does not open Scope windows, although
it does write data to connected Scopes. As a result, if you open a Scope after a
simulation, the Scope’s input signal or signals will be displayed.

If the signal is continuous, the Scope produces a point-to-point plot. If the
signal is discrete, the Scope produces a stair-step plot.

The Scope provides toolbar buttons that enable you to zoom in on displayed
data, display all the data input to the Scope, preserve axis settings from one
simulation to the next, limit data displayed, and save data to the workspace.
The toolbar buttons are labeled in this figure, which shows the Scope window
as it appears when you open a Scope block.

Zoom in x and y directions

Zoom in x direction

Zoom in y direction

Autoscale

Save axes settings

Print

Scope parameters

Restore axes settings

Floating scope

Signal Selection

Unlock axis selection
2-301

Scope, Floating Scope

slref.book Page 302 M onday, Septem ber 27, 2004 3:20 PM
Note Do not use Scope blocks inside library blocks that you create. Instead,
provide the library blocks with output ports to which scopes can be connected
to display internal data.

Displaying Vector Signals
When displaying a vector or matrix signal, the Scope assigns colors to each
signal element in this order: yellow, magenta, cyan, red, green, and dark blue.
When more than six signals are displayed, the Scope cycles through the colors
in the order listed.

Y-Axis Limits
You set y-limits by right-clicking an axis and choosing Axes Properties. The
following dialog box appears.

Y-min
Enter the minimum value for the y-axis.

Y-max
Enter the maximum value for the y-axis.

Title
Enter the title of the plot. You can include a signal label in the title by
typing %<SignalLabel> as part of the title string (%<SignalLabel> is
replaced by the signal label).
2-302

Scope, Floating Scope

slref.book Page 303 M onday, Septem ber 27, 2004 3:20 PM
Time Offset
This figure shows the Scope block displaying the output of the vdp model. The
simulation was run for 40 seconds. Note that this scope shows the final 20
seconds of the simulation. The Time offset field displays the time
corresponding to 0 on the horizontal axis. Thus, you have to add the offset to
the fixed time range values on the x-axis to get the actual time.
2-303

Scope, Floating Scope

slref.book Page 304 M onday, Septem ber 27, 2004 3:20 PM
Autoscaling the Scope Axes
This figure shows the same output after you click the Autoscale toolbar button,
which automatically scales both axes to display all stored simulation data. In
this case, the y-axis was not scaled because it was already set to the
appropriate limits.

If you click the Autoscale button while the simulation is running, the axes are
autoscaled based on the data displayed on the current screen, and the
autoscale limits are saved as the defaults. This enables you to use the same
limits for another simulation.

Note Simulink does not buffer the data that it displays on a floating Scope. It
can therefore scale the contents of a floating Scope only when data is being
displayed, i.e., when a simulation is running. When a simulation is not
running, Simulink disables (grays) the Zoom button on the toolbar of a
floating Scope to indicate that it cannot scale its contents.

Autoscale button
2-304

Scope, Floating Scope

slref.book Page 305 M onday, Septem ber 27, 2004 3:20 PM
Zooming
You can zoom in on data in both the x and y directions at the same time, or in
either direction separately. The zoom feature is not active while the simulation
is running.

To zoom in on data in both directions at the same time, make sure the leftmost
Zoom toolbar button is selected. Then, define the zoom region using a bounding
box. When you release the mouse button, the Scope displays the data in that
area. You can also click a point in the area you want to zoom in on.

If the scope has multiple y-axes, and you zoom in on one set of x-y axes, the
x-limits on all sets of x-y axes are changed so that they match, because all x-y
axes must share the same time base (x-axis).

This figure shows a region of the displayed data enclosed within a bounding
box.

Zoom in both directions
2-305

Scope, Floating Scope

slref.book Page 306 M onday, Septem ber 27, 2004 3:20 PM
This figure shows the zoomed region, which appears after you release the
mouse button.

To zoom in on data in just the x direction, click the middle Zoom toolbar button.
Define the zoom region by positioning the pointer at one end of the region,
pressing and holding down the mouse button, then moving the pointer to the
other end of the region. This figure shows the Scope after you define the zoom
region, but before you release the mouse button.

Zoom in on x
2-306

Scope, Floating Scope

slref.book Page 307 M onday, Septem ber 27, 2004 3:20 PM
When you release the mouse button, the Scope displays the magnified region.
You can also click a point in the area you want to zoom in on.

Zooming in the y direction works the same way except that you click the
rightmost Zoom toolbar button before defining the zoom region. Again, you can
also click a point in the area you want to zoom in on.

Note Simulink does not buffer the data that it displays on a floating scope. It
therefore cannot zoom the contents of a floating scope. To indicate this,
Simulink disables (grays) the Zoom button on the toolbar of a floating scope.

Saving the Axes Settings
The Save axes settings toolbar button enables you to store the current x- and
y-axis settings so you can apply them to the next simulation.

You might want to do this after zooming in on a region of the displayed data so
you can see the same region in another simulation. The time range is inferred
from the current x-axis limits.

Scope Parameters
You can change axis limits, set the number of axes, time range, tick labels,
sampling parameters, and saving options by choosing the Parameters toolbar
button.

Save axes settings

Parameters
2-307

Scope, Floating Scope

slref.book Page 308 M onday, Septem ber 27, 2004 3:20 PM
When you click the Parameters button, this dialog box appears.

The dialog box has two panes: General and Data history.

General Parameters
You can set the axis parameters, time range, and tick labels in the General tab.
You can also choose the floating scope option with this tab.

Number of axes
Set the number of y-axes in this data field. With the exception of the
floating scope, there is no limit to the number of axes the Scope block can
contain. All axes share the same time base (x-axis), but have independent
y-axes. Note that the number of axes is equal to the number of input ports.

Time range
Change the x-axis limits by entering a number or auto in the Time range
field. Entering a number of seconds causes each screen to display the
amount of data that corresponds to that number of seconds. Enter auto to
set the x-axis to the duration of the simulation. Do not enter variable
names in these fields.

Tick labels
You can choose to have tick labels on all axes, on one axis, or on the bottom
axis only, using the Tick labels list.

Floating scope
Selecting this option turns a Scope block into a floating scope. A floating
scope is a Scope block that can display the signals carried on one or more
lines. You can create a Floating Scope block in a model either by copying a
2-308

Scope, Floating Scope

slref.book Page 309 M onday, Septem ber 27, 2004 3:20 PM
Scope block from the Simulink Sinks library into a model and selecting this
option or, more simply, by copying the Floating Scope block from the Sinks
library into the model window. The Floating Scope block has the Floating
scope parameter selected by default.

To use a floating scope during a simulation, first open the scope. To display
the signals carried on a line, select the line. Hold down the Shift key while
clicking another line to select multiple lines. It might be necessary to click
the Autoscale data button on the floating scope’s toolbar to find the signal
and adjust the axes to the signal values. Or you can use the floating scope’s
Signal Selector (see “Signal Selector” on page 2-312) to select signals for
display. The Signal Selector allows you to select signals anywhere in your
model, including unopened subsystems.

You can have more than one floating scope in a model, but only one set of
axes in one scope can be active at a given time. Active floating scopes show
the active axes by making them blue. Selecting or deselecting lines affects
the active floating scope only. Other floating scopes continue to display the
signals that you selected when they were active. In other words, nonactive
floating scopes are locked, in that their signal displays cannot change.

To specify display of a signal on one of the axes of a multiaxis floating scope,
click the axis. Simulink draws a blue border around the axis.
2-309

Scope, Floating Scope

slref.book Page 310 M onday, Septem ber 27, 2004 3:20 PM
Then click the signal you want to display in the block diagram or the Signal
Selector. When you run the model, the selected signal appears in the
selected axis.

If you plan to use a floating scope during a simulation, you should disable
signal storage reuse. See “Signal storage reuse” in “Optimizations” for
more information.

Sampling
To specify a decimation factor, enter a number in the data field to the right
of the Decimation choice. To display data at a sampling interval, select the
Sample time choice and enter a number in the data field.
2-310

Scope, Floating Scope

slref.book Page 311 M onday, Septem ber 27, 2004 3:20 PM
Controlling Data Collection and Display
You can control the amount of data that the Scope stores and displays by
setting fields on the Data History pane.

You can also choose to save data to the workspace in this tab. You apply the
current parameters and options by clicking the Apply or OK button. The
values that appear in these fields are the values that are used in the next
simulation.

Limit data points to last
You can limit the number of data points saved to the workspace by
selecting the Limit data points to last check box and entering a value in
its data field. The Scope relies on its data history for zooming and
autoscaling operations. If the number of data points is limited to 1,000 and
the simulation generates 2,000 data points, only the last 1,000 are
available for regenerating the display.

Save data to workspace
You can automatically save the data collected by the Scope at the end of the
simulation by selecting the Save data to workspace check box. If you
select this option, the Variable name and Format fields become active.

Variable name
Enter a variable name in the Variable name field. The specified name
must be unique among all data logging variables being used in the model.
Other data logging variables are defined on other Scope blocks, To
Workspace blocks, and simulation return variables such as time, states,
and outputs. Being able to save Scope data to the workspace means that it
2-311

Scope, Floating Scope

slref.book Page 312 M onday, Septem ber 27, 2004 3:20 PM
is not necessary to send the same data stream to both a Scope block and a
To Workspace block.

Format
Data can be saved in one of three formats: Array, Structure, or Structure
with time. Use Array only for a Scope with one set of axes. For Scopes with
more than one set of axes, use Structure if you do not want to store time
data and use Structure with time if you want to store time data.

Printing the Contents of a Scope Window
To print the contents of a Scope window, open the Scope Properties dialog by
clicking the Print icon, the rightmost icon on the Scope toolbar.

Signal Selector
The Signal Selector allows you to select the signals to be displayed in the
floating scope. You can use it to select any signal in you model, including
signals in unopened subsystems. To display the Signal Selector, first start
simulation of your model with the floating scope open. Then right-click your
mouse in the floating scope and select Signal Selection from the pop-up menu
that appears. The Signal Selector appears.

Print
2-312

Scope, Floating Scope

slref.book Page 313 M onday, Septem ber 27, 2004 3:20 PM
The Signal Selector contains two panes. The left pane allows you to display
signals of any subsystem in your model. The signals appear in the right pane.
The right pane allows you to select the signals to display in the floating scope.

To select a subsystem for viewing, click its entry in the Model hierarchy tree
or use the up or down arrow keys to move the selection highlight to the entry.
To show or hide the subsystems contained by the currently selected subsystem,
click the +/- button next to the subsystem’s name or press the forward or
backward arrow keys on your keyboard. To view subsystems included as
library links in your model, click the Library Links button at the top of the
Model hierarchy pane. To view the subsystems contained by masked
subsystems, click the Look Under Masks button at the top of the pane.

The Signals pane shows all the signals in the currently selected subsystem by
default. To show named signals only, select Named signals only from the List
contents control at the top of the pane. To show test point signals only, select
Test point signals only from the List contents control. To show only signals
whose signals match a specified string of characters, enter the characters in the
Show signals matching control at the bottom of the Signals pane and press
the Enter key. To show the selected types of signals for all subsystems below
the currently selected subsystem in the model hierarchy, select the Current
and Below button at the top of the Signals pane.

The Signals pane by default shows the name of each signal and the number of
the port that emits the signal. To display more information on each signal,
select the Detailed view button at the top of the pane. The detailed view shows
the path and data type of each signal and whether the signal is a test point.

To select or deselect a signal in the Signals pane, click its entry or use the
arrow keys to move the selection highlight to the signal entry and press the
Enter key. You can also move the selection highlight to a signal entry by typing
the first few characters of its name (enough to uniquely identify it).
2-313

Scope, Floating Scope

slref.book Page 314 M onday, Septem ber 27, 2004 3:20 PM
Note You can continue to select and deselect signals on the block diagram
with the Signal Selector open. For example, shift-clicking a line in the block
diagram adds the corresponding signal to the set of signals that you
previously selected with the Signal Selector. Simulink updates the Signal
Selector to reflect signal selection changes you have made on the block
diagram. However, the changes do not appear until you select the Signal
Selector window itself.

Data Type
Support

A Scope block accepts real signals of any data type supported by Simulink, as
well as fixed-point data types. The Scope block accepts homogeneous vectors.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Characteristics Sample Time Inherited from driving block or can be set

States 0
2-314

Selector

slref.book Page 315 M onday, Septem ber 27, 2004 3:20 PM
2SelectorPurpose Select input elements from a vector or matrix signal

Library Signal Routing

Description The Selector block generates as output selected elements of an input vector or
matrix.

A Selector block accepts either vector or matrix signals as input. Set the Input
Type parameter to the type of signal (vector or matrix) that the block should
accept in your model. The parameter dialog box and the block icon change to
reflect the type of input that you select. The way the block determines the
elements to select differs slightly, depending on the type of input.

Vector Input
If the input type is vector, a Selector block outputs a vector of selected
elements. The block determines the indices of the elements to select either from
the block’s Elements parameter or from an external signal. Set the Source of
element indices parameter to the source (internal, i.e., parameter value, or
external) that you prefer. If you select external, the block adds an input port
for the external index signal.

In either case, the elements to be selected must be specified as a vector unless
only one element is being selected. For example, this model shows the Selector
block icon and the output for an input vector of [2 4 6 8 10] and an Elements
parameter value of [5 1 3].

If the block icon is large enough, it displays the ordering of input vector
elements graphically.

If you select external as the source for element indices, the block adds an input
port for the element indices signal. The signal should specify the elements to
be selected in the same way they are specified, using the Elements parameter.
2-315

Selector

slref.book Page 316 M onday, Septem ber 27, 2004 3:20 PM
If the input type is vector, you must specify the width of the input signal or -1,
using the Input port width parameter. If you specify a width greater than 0,
the width of the input signal must equal the specified width. Otherwise, the
block reports an error. If you specify a width of -1, the block accepts a vector
signal of any width.

Matrix Input
If the input type is matrix, the Selector block outputs a matrix of elements
selected from the input matrix. The block determines the row and column
indices of the elements to select either from its Rows and Columns parameters
or from external signals. Set the block’s Source of row indices and Source of
column indices to the source that you prefer (internal or external). If you set
either source to external, the block adds an input port for the external indices
signal. If you set both sources to external, the block adds two input ports.

In either case, the indices of the row and columns to be selected must be
specified as vectors (or a scalar if only one row or column is to be selected). For
example, the Rows expression [2 1] and the Columns expression [1 3]
specify output of a 2-by-2 matrix whose first row contains the first and third
elements of the input matrix’s second row and whose second row contains the
first and third elements of the input matrix’s first row.

Data Type
Support

The Selector block accepts signals of any signal type and any data type
supported by Simulink, as well as fixed-point data types. The Selector block
supports mixed-type signal vectors. The elements of the output vector have the
same type as the corresponding selected input elements.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

The parameter dialog box appears as follows when vector input mode is
selected.
2-316

Selector

slref.book Page 317 M onday, Septem ber 27, 2004 3:20 PM
Input Type
The type of the input signal: vector or matrix.

Source of element indices
The source of the indices specifying the elements to select, either internal,
i.e., the Elements parameter, or external, i.e., an input signal.

Elements
The elements to be included in the output vector.

Input port width
The number of elements in the input vector.
2-317

Selector

slref.book Page 318 M onday, Septem ber 27, 2004 3:20 PM
The dialog box appears as follows when matrix input mode is selected.

Input Type
The type of the input signal: vector or matrix.

Source of row indices
The source of the indices specifying the rows to select from the input
matrix, either internal, i.e., the Rows parameter, or external, i.e., an
input signal.

Rows
Indices of the rows from which to select elements to be included in the
output matrix.

Source of column indices
The source of the indices specifying the columns to select from the input
matrix, either internal, i.e., the Columns parameter, or external, i.e., an
input signal.

Columns
Indices of the columns from which to select elements to be included in the
output matrix.

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes
2-318

S-Function

slref.book Page 319 M onday, Septem ber 27, 2004 3:20 PM
2S-FunctionPurpose Access an S-function

Library User-Defined Functions

Description The S-Function block provides access to S-functions from a block diagram. The
S-function named as the S-function name parameter can be an M-file or
MEX-file written as an S-function (see “Overview of S-Functions” in Writing
S-Functions for information on how to create S-functions).

The S-Function block allows additional parameters to be passed directly to the
named S-function. The function parameters can be specified as MATLAB
expressions or as variables separated by commas. For example,

A, B, C, D, [eye(2,2);zeros(2,2)]

Note that although individual parameters can be enclosed in brackets, the list
of parameters must not be enclosed in brackets.

The S-Function block displays the name of the specified S-function and is
always drawn with one input port and one output port, regardless of the
number of inputs and outputs of the contained subsystem.

Vector lines are used when the S-function contains more than one input or
output. The input vector width must match the number of inputs contained in
the S-function. The block directs the first element of the input vector to the first
input of the S-function, the second element to the second input, and so on.
Likewise, the output vector width must match the number of S-function
outputs.

Data Type
Support

Depends on the implementation of the S-Function block.
2-319

S-Function

slref.book Page 320 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

S-function name
The S-function name.

S-function parameters
Additional S-function parameters. See the preceding block description for
information on how to specify the parameters.

Characteristics Direct Feedthrough Depends on contents of S-function

Sample Time Depends on contents of S-function

Scalar Expansion Depends on contents of S-function

Dimensionalized Depends on contents of S-function

Zero Crossing No
2-320

S-Function Builder

slref.book Page 321 M onday, Septem ber 27, 2004 3:20 PM
2S-Function BuilderPurpose Create an S-function from C code that you provide

Library User-Defined Functions

Description The S-Function Builder block creates a C MEX-file S-function from
specifications and C source code that you provide. See “Building S-Functions
Automatically” for detailed instructions on using the S-Function Builder block
to generate an S-function.

Instances of the S-Function Builder block also serve as wrappers for generated
S-functions in Simulink models. When simulating a model containing
instances of an S-Function Builder block, Simulink invokes the generated
S-function associated with each instance to compute the instance’s output at
each time step.

Data Type
Support

The S-Function Builder can accept and output complex, 1-D or 2-D signals of
any data type supported by Simulink.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

See “S-Function Builder Dialog Box” in the online documentation for
information on using the S-Function Builder block’s parameter dialog box.
2-321

Sign

slref.book Page 322 M onday, Septem ber 27, 2004 3:20 PM
2SignPurpose Indicate the sign of the input

Library Simulink Math Operations and Fixed-Point Blockset Nonlinear

Description The Sign block indicates the sign of the input:

• The output is 1 when the input is greater than zero.

• The output is 0 when the input is equal to zero.

• The output is -1 when the input is less than zero.

Data Type
Support

The Sign block accepts real or complex signals of any data type supported by
Simulink, as well as fixed-point data types. The output is a signed data type
with the same number of bits as the input, and with nominal scaling (a slope
of one and a bias of zero).

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Characteristics

Sign

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion N/A
2-322

Signal Builder

slref.book Page 323 M onday, Septem ber 27, 2004 3:20 PM
2Signal BuilderPurpose Create and generate interchangeable groups of signals whose waveforms are
piecewise linear

Library Sources

Description The Signal Builder allows you to create interchangeable groups of piecewise
linear signal sources and use them in a model. See “Working with Signal
Groups” in Using Simulink for more information.

Data Type
Support

A Signal Builder block outputs a scalar or array of real signals of type double.

Parameters
and Dialog Box

The Signal Builder block has the same dialog box as that of a Subsystem block.
To display the dialog box, select Block Parameters from the block’s context
menu.

Characteristics Sample Time Continuous

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing No
2-323

Signal Generator

slref.book Page 324 M onday, Septem ber 27, 2004 3:20 PM
2Signal GeneratorPurpose Generate various waveforms

Library Sources

Description The Signal Generator block can produce one of three different waveforms: sine
wave, square wave, and sawtooth wave. The signal parameters can be
expressed in Hertz (the default) or radians per second. This figure shows each
signal displayed on a Scope using default parameter values.

Square WaveSine Wave

Sawtooth Wave
2-324

Signal Generator

slref.book Page 325 M onday, Septem ber 27, 2004 3:20 PM
A negative Amplitude parameter value causes a 180-degree phase shift. You
can generate a phase-shifted wave at other than 180 degrees in a variety of
ways, including connecting a Clock block signal to a MATLAB Fcn block and
writing the equation for the particular wave.

You can vary the output settings of the Signal Generator block while a
simulation is in progress. This is useful to determine quickly the response of a
system to different types of inputs.

The block’s Amplitude and Frequency parameters determine the amplitude
and frequency of the output signal. The parameters must be of the same
dimensions after scalar expansion. If the Interpret vector parameters as 1-D
option is off, the block outputs a signal of the same dimensions as the
Amplitude and Frequency parameters (after scalar expansion). If the
Interpret vector parameters as 1-D option is on, the block outputs a vector
(1-D) signal if the Amplitude and Frequency parameters are row or column
vectors, i.e. single row or column 2-D arrays. Otherwise, the block outputs a
signal of the same dimensions as the parameters.

Data Type
Support

A Signal Generator block outputs a scalar or array of real signals of type
double.

Parameters
and Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
2-325

Signal Generator

slref.book Page 326 M onday, Septem ber 27, 2004 3:20 PM
Wave form
The wave form: a sine wave, square wave, or sawtooth wave. The default is
a sine wave. This parameter cannot be changed while a simulation is
running.

Amplitude
The signal amplitude. The default is 1.

Frequency
The signal frequency. The default is 1.

Units
The signal units: Hertz or radians/sec. The default is Hertz.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Amplitude and Frequency
parameters result in a vector output signal.

Characteristics Sample Time Continuous

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing No
2-326

Signal Specification

slref.book Page 327 M onday, Septem ber 27, 2004 3:20 PM
2Signal SpecificationPurpose Verify that an input signal has the specified dimensions, sample time, data
type, and numeric type

Library Signal Attributes

Description The Signal Specification block checks that the input signal has certain
specified attributes. If so, the block outputs the input signal unchanged.
Otherwise, it halts the simulation and displays an error message.

The Signal Specification block can be used as a mechanism to ensure that the
attributes of a signal meet the desired attributes for certain sections of your
model. For example, consider two people working on different parts of a model.
The Signal Specification block is useful for indicating which attributes of
various signals are needed by the different sections of the model. If there is a
miscommunication and data types are changed unexpectedly, the attributes do
not match and Simulink reports an appropriate error. Using the Signal
Specification block helps ensure that you do not introduce unexpected
problems into your models. If you are familiar with the assert mechanism in
languages such as C, you can see that the Signal Specification block serves a
similar purpose.

The Signal Specification block can also be used to ensure correct propagation
of signal attributes throughout a model. Simulink’s capability of allowing many
attributes to be propagated from block to block is very powerful. However,
when using user-written S-functions, it is possible to create models that don't
have enough information to correctly propagate attributes around the model.
For these cases, the Signal Specification block is a good way of providing the
information Simulink needs. Using the Signal Specification block also helps
speed up model compilation when blocks are missing signal attributes.

Data Type
Support

The Signal Specification block accepts real or complex signals of any data type
supported by Simulink, as well as fixed-point data types. The input data type
must match the data type specified by the Data type parameter.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Inherit

Signal Specification
2-327

Signal Specification

slref.book Page 328 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Dimensions
Specify the dimensions that the input signal must match. Valid values are

• -1—Any dimension accepted

• n—Vector signal of width n accepted

• [m n]—Matrix signal having m rows and n columns accepted

Sample Time
Specify the sample time that the input signal must match. Valid values are

• -1—Any sample time accepted
• period >= 0
• [offset, period]
• [0, -1]

• [-1, -1]

where period is the sample rate and offset is the offset of the sample
period from time zero (see “Sample Time”).

Data type
Specify the data type that the input signal must match. To accept any data
type, set this parameter to auto.
2-328

Signal Specification

slref.book Page 329 M onday, Septem ber 27, 2004 3:20 PM
Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Data type
parameter.

Output scaling value
Set the output scaling using binary point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Data
type parameter.

Signal type
Specify the numeric type (real or complex) that the input signal must
match. To accept any numeric type, set this parameter to auto.

Sampling mode
Specify the sampling mode (sample-based or frame-based) that the input
signal must match. To accept any sampling mode, set this parameter to
auto.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Continuous

Scalar Expansion No

Zero Crossing No
2-329

Sine Wave

slref.book Page 330 M onday, Septem ber 27, 2004 3:20 PM
2Sine WavePurpose Generate a sine wave

Library Sources

Description The Sine Wave block provides a sinusoid. The block can operate in either
time-based or sample-based mode.

Time-Based Mode
The output of the Sine Wave block is determined by

Time-based mode has two submodes: continuous mode or discrete mode. The
value of the Sample time parameter determines whether the block operates in
continuous mode or discrete mode:

• 0 (the default) causes the block to operate in continuous mode.

• >0 causes the block to operate in discrete mode.

See “Specifying Sample Time” in the online documentation for more
information.

Using the Sine Wave Block in Continuous Mode
A Sample time parameter value of 0 causes the block to operate in continuous
mode. When operating in continuous mode, the Sine Wave block can become
inaccurate due to loss of precision as time becomes very large.

Using the Sine Wave Block in Discrete Mode
A Sample time parameter value greater than zero causes the block to behave
as if it were driving a Zero-Order Hold block whose sample time is set to that
value.

Using the Sine Wave block in this way allows you to build models with sine
wave sources that are purely discrete, rather than models that are hybrid
continuous/discrete systems. Hybrid systems are inherently more complex and
as a result take longer to simulate.

The Sine Wave block in discrete mode uses an incremental algorithm rather
than one based on absolute time. As a result, the block can be useful in models

y Amplitude frequency time× phase+()sin× bias+=
2-330

Sine Wave

slref.book Page 331 M onday, Septem ber 27, 2004 3:20 PM
intended to run for an indefinite length of time, such as in vibration or fatigue
testing.

The incremental algorithm computes the sine based on the value computed at
the previous sample time. This method makes use of the following identities:

These identities can be written in matrix form:

Since ∆t is constant, the following expression is a constant:

Therefore the problem becomes one of a matrix multiplication of the value of
sin(t) by a constant matrix to obtain sin(t+∆t).

Discrete mode reduces but does not eliminate accumulation of roundoff errors.
This is because the computation of the block’s output at each time step depends
on the value of the output at the previous time step.

Sample-Based Mode
Sample-based mode uses the following formula to compute the output of the
Sine Wave block.

where

• A is the amplitude of the sine wave.

• p is the number of time samples per sine wave period.

• k is a repeating integer value that ranges from 0 to p-1.

• o is the offset (phase shift) of the signal.

• b is the signal bias.

t ∆t+()sin t() ∆t()cossin ∆t() t()cossin+=

t ∆t+()cos t() ∆t()coscos t() ∆t()sinsin–=

t ∆t+()sin
t ∆t+()cos

∆t()cos ∆t()sin
∆t()sin– ∆t()cos

t()sin
t()cos

=

∆t()cos ∆t()sin
∆t()sin– ∆t()cos

y A 2 π× k o+()× p⁄()sin× b+=
2-331

Sine Wave

slref.book Page 332 M onday, Septem ber 27, 2004 3:20 PM
In this mode, Simulink sets k equal to 0 at the first time step and computes the
block’s output, using the preceding formula. At the next time step, Simulink
increments k and recomputes the output of the block. When k reaches p,
Simulink resets k to 0 before computing the block’s output. This process
continues until the end of the simulation.

The sample-based method of computing the block’s output does not depend on
the result of the previous time step to compute the result at the current time
step. It therefore avoids roundoff error accumulation. However, it has one
potential drawback. If the block is in a conditionally executed subsystem and
the conditionally executed subsystem pauses and then resumes execution, the
output of the Sine Wave block might no longer be in sync with the rest of the
simulation. Thus, if the accuracy of your model requires that the output of
conditionally executed Sine Wave blocks remain in sync with the rest of the
model, you should use time-based mode for computing the output of the
conditionally executed blocks.

Parameter Dimensions
The block’s numeric parameters must be of the same dimensions after scalar
expansion. If the Interpret vector parameters as 1-D option is off, the block
outputs a signal of the same dimensions and dimensionality as the parameters.
If the Interpret vector parameters as 1-D option is on and the numeric
parameters are row or column vectors (i.e., single row or column 2-D arrays),
the block outputs a vector (1-D array) signal; otherwise, the block outputs a
signal of the same dimensionality and dimensions as the parameters.

Data Type
Support

A Sine Wave block accepts and outputs real signals of type double.
2-332

Sine Wave

slref.book Page 333 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.

Sine type
Type of sine wave generated by this block, either time- or sample-based.
Some of the other options presented by the Sine Wave dialog box depend on
whether you select time-based or sample-based as the value of Sine type
parameter.

Amplitude
The amplitude of the signal. The default is 1.

Bias
Constant value added to the sine to produce the output of this block.

Frequency
The frequency, in radians/second. The default is 1 rad/s. This parameter
appears only if you choose time-based as the Sine type of the block.
2-333

Sine Wave

slref.book Page 334 M onday, Septem ber 27, 2004 3:20 PM
Samples per period
Number of samples per period. This parameter appears only if you choose
sample-based as the Sine type of the block.

Phase
The phase shift, in radians. The default is 0 radians. This parameter
appears only if you choose time-based as the Sine type of the block.

Number of offset samples
The offset (discrete phase shift) in number of sample times. This parameter
appears only if you choose sample-based as the Sine type of the block.

Sample time
The sample period. The default is 0. If the sine type is sample-based, the
sample time must be greater than 0. See “Specifying Sample Time” in the
online documentation for more information.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Sine Wave block’s numeric
parameters result in a vector output signal; otherwise, the block outputs a
signal of the same dimensionality as the parameters. If this option is not
selected, the block always outputs a signal of the same dimensionality as
the block’s numeric parameters.

Characteristics Sample Time Continuous, discrete, or inherited for time-based and
discrete for sample-based

Scalar Expansion Of parameters

Dimensionalized Yes

Zero Crossing No
2-334

Slider Gain

slref.book Page 335 M onday, Septem ber 27, 2004 3:20 PM
2Slider GainPurpose Vary a scalar gain using a slider

Library Math Operations

Description The Slider Gain block allows you to vary a scalar gain during a simulation
using a slider. The block accepts one input and generates one output.

Data Type
Support

Data type support for the Slider Gain block is the same as that for the Gain
block (see Gain, Matrix Gain on page 2-160).

Dialog Box

Low
The lower limit of the slider range. The default is 0.

High
The upper limit of the slider range. The default is 2.

The edit fields indicate (from left to right) the lower limit, the current value,
and the upper limit. You can change the gain in two ways: by manipulating the
slider, or by entering a new value in the current value field. You can change the
range of gain values by changing the lower and upper limits. Close the dialog
box by clicking the Close button.

If you click the slider’s left or right arrow, the current value changes by about
1% of the slider’s range. If you click the rectangular area to either side of the
slider’s indicator, the current value changes by about 10% of the slider’s range.

To apply a vector or matrix gain to the block input, consider using the Gain
block.
2-335

Slider Gain

slref.book Page 336 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of the gain

States 0

Dimensionalized Yes

Zero Crossing No
2-336

State-Space

slref.book Page 337 M onday, Septem ber 27, 2004 3:20 PM
2State-SpacePurpose Implement a linear state-space system

Library Continuous

Description The State-Space block implements a system whose behavior is defined by

where x is the state vector, u is the input vector, and y is the output vector. The
matrix coefficients must have these characteristics, as illustrated in the
following diagram:

• A must be an n-by-n matrix, where n is the number of states.

• B must be an n-by-m matrix, where m is the number of inputs.

• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

The block accepts one input and generates one output. The input vector width
is determined by the number of columns in the B and D matrices. The output
vector width is determined by the number of rows in the C and D matrices.

Simulink converts a matrix containing zeros to a sparse matrix for efficient
multiplication.

Specifying the Absolute Tolerance for the Block’s States
By default Simulink uses the absolute tolerance value specified in the
Simulation Parameters dialog box (see “Error Tolerances”) to solve the states
of the State-Space block. If this value does not provide sufficient error control,
specify a more appropriate value in the Absolute tolerance field of the
State-Space block’s dialog box. The value that you specify is used to solve all
the block’s states.

x· Ax Bu+=

y Cx Du+=

A B

C D

n

n

m

r

2-337

State-Space

slref.book Page 338 M onday, Septem ber 27, 2004 3:20 PM
Data Type
Support

A State-Space block accepts and outputs real signals of type double.

Parameters
and Dialog Box

A, B, C, D
The matrix coefficients.

Initial conditions
The initial state vector.

Absolute tolerance
Absolute tolerance used to solve the block’s states. You can enter auto or a
numeric value. If you enter auto, Simulink determines the absolute
tolerance (see “Error Tolerances”). If you enter a numeric value, Simulink
uses the specified value to solve the block’s states. Note that a numeric
value overrides the setting for the absolute tolerance in the Simulation
Parameters dialog box.
2-338

State-Space

slref.book Page 339 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough Only if D ≠ 0

Sample Time Continuous

Scalar Expansion Of the initial conditions

States Depends on the size of A

Dimensionalized Yes

Zero Crossing No
2-339

Step

slref.book Page 340 M onday, Septem ber 27, 2004 3:20 PM
2StepPurpose Generate a step function

Library Sources

Description The Step block provides a step between two definable levels at a specified time.
If the simulation time is less than the Step time parameter value, the block’s
output is the Initial value parameter value. For simulation time greater than
or equal to the Step time, the output is the Final value parameter value.

The block’s numeric parameters must be of the same dimensions after scalar
expansion. If the Interpret vector parameters as 1-D option is off, the block
outputs a signal of the same dimensions and dimensionality as the parameters.
If the Interpret vector parameters as 1-D option is on and the numeric
parameters are row or column vectors (i.e., single row or column 2-D arrays),
the block outputs a vector (1-D array) signal; otherwise, the block outputs a
signal of the same dimensionality and dimensions as the parameters.

Data Type
Support

A Step block outputs real signals of type double.

Parameters
and Dialog Box

Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.
2-340

Step

slref.book Page 341 M onday, Septem ber 27, 2004 3:20 PM
Step time
The time, in seconds, when the output jumps from the Initial value
parameter to the Final value parameter. The default is 1 second.

Initial value
The block output until the simulation time reaches the Step time
parameter. The default is 0.

Final value
The block output when the simulation time reaches and exceeds the Step
time parameter. The default is 1.

Sample time
Sample rate of step. See “Specifying Sample Time” in the online
documentation for more information.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Step block’s numeric
parameters result in a vector output signal; otherwise, the block outputs a
signal of the same dimensionality as the parameters. If this option is not
selected, the block always outputs a signal of the same dimensionality as
the block’s numeric parameters.

Enable zero crossing detection
Select to enable zero crossing detection to detect step times. For more
information, see “Zero Crossing Detection” in the Using Simulink
documentation.

Characteristics Sample Time Inherited from driven block

Scalar Expansion Of parameters

Dimensionalized Yes
2-341

Stop Simulation

slref.book Page 342 M onday, Septem ber 27, 2004 3:20 PM
2Stop SimulationPurpose Stop the simulation when the input is nonzero

Library Sinks

Description The Stop Simulation block stops the simulation when the input is nonzero.

The simulation completes the current time step before terminating. If the block
input is a vector, any nonzero vector element causes the simulation to stop.

You can use this block in conjunction with the Relational Operator block to
control when the simulation stops. For example, this model stops the
simulation when the input signal reaches 10.

Data Type
Support

A Stop Simulation block accepts real signals of type double or boolean.

Dialog Box

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes
2-342

Subsystem, Atomic Subsystem

slref.book Page 343 M onday, Septem ber 27, 2004 3:20 PM
2Subsystem, Atomic SubsystemPurpose Represent a system within another system

Library Ports & Subsystems

Description A Subsystem block represents a subsystem of the system that contains it. The
Subsystem block can represent a virtual subsystem or a true (atomic)
subsystem (see “Atomic Versus Virtual Subsystems”), depending on the value
of its Treat as Atomic Unit parameter. An Atomic Subsystem block is a
Subsystem block that has its Treat as Atomic Unit parameter selected by
default.

You create a subsystem in these ways:

• Copy the Subsystem (or Atomic Subsystem) block from the Ports &
Subsystems library into your model. You can then add blocks to the
subsystem by opening the Subsystem block and copying blocks into its
window.

• Select the blocks and lines that are to make up the subsystem using a
bounding box, then choose Create Subsystem from the Edit menu. Simulink
replaces the blocks with a Subsystem block. When you open the block, the
window displays the blocks you selected, adding Inport and Outport blocks
to reflect signals entering and leaving the subsystem.

The number of input ports drawn on the Subsystem block’s icon corresponds to
the number of Inport blocks in the subsystem. Similarly, the number of output
ports drawn on the block corresponds to the number of Outport blocks in the
subsystem.

See “Creating Subsystems” for more information about subsystems.

Data Type
Support

A subsystem’s enable and trigger ports accept any data type supported by
Simulink, as well as fixed-point data types. For a discussion on the data types
supported by Simulink, refer to “Data Types Supported by Simulink” in the
Using Simulink documentation.

See Inport on page 2-181 for information on the data types accepted by a
subsystem’s input ports. See Outport on page 2-250 for information on the data
types output by a subsystem’s output ports.
2-343

Subsystem, Atomic Subsystem

slref.book Page 344 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Show port labels
Causes Simulink to display the labels of the subsystem’s ports in the
subsystem’s icon.

Treat as atomic unit
Causes Simulink to treat the subsystem as a unit when determining block
execution order. When it comes time to execute the subsystem, Simulink
executes all blocks within the subsystem before executing any other block
at the same level as the subsystem block. If this option is not selected,
Simulink treats all blocks in the subsystem as being at the same level in
the model hierarchy as the subsystem when determining block execution
order. This can cause execution of blocks within the subsystem to be
interleaved with execution of blocks outside the subsystem. See “Atomic
Versus Virtual Subsystems” for more information.
2-344

Subsystem, Atomic Subsystem

slref.book Page 345 M onday, Septem ber 27, 2004 3:20 PM
Access
Controls user access to the contents of the subsystem. You can select any
of the following values.

Name of error callback function
Name of a function to be called if an error occurs while Simulink is
executing the subsystem. Simulink passes two arguments to the function:
the handle of the subsystem and a string that specifies the error type. If no
function is specified, Simulink displays a generic error message if
executing the subsystem causes an error.

Note Parameters whose names begin with RTW are used by the Real-Time
Workshop for code generation. See the Real-Time Workshop documentation
for more information.

Access Description

ReadWrite User can open and modify the contents of the
subsystem.

ReadOnly User can open but not modify the subsystem. If the
subsystem resides in a block library, a user can
create and open links to the subsystem and can
make and modify local copies of the subsystem but
cannot change the permissions or modify the
contents of the original library instance.

NoReadOrWrite User cannot open or modify the subsystem. If the
subsystem resides in a library, a user can create
links to the subsystem in a model but cannot open,
modify, change permissions, or create local copies of
the subsystem.
2-345

Subsystem, Atomic Subsystem

slref.book Page 346 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Sample Time Depends on the blocks in the subsystem

Dimensionalized Depends on the blocks in the subsystem

Zero Crossing Yes, for enable and trigger ports if present
2-346

Sum

slref.book Page 347 M onday, Septem ber 27, 2004 3:20 PM
2SumPurpose Add or subtract inputs

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Sum block performs addition or subtraction on its inputs. This block can
add or subtract scalar, vector, or matrix inputs. It can also collapse the
elements of a single input vector.

You specify the operations of the block with the List of Signs parameter. Plus
(+), minus (-), and spacer (|) characters indicate the operations to be performed
on the inputs:

• If there are two or more inputs, then the number of characters must equal
the number of inputs. For example, “+-+” requires three inputs and
configures the block to subtract the second (middle) input from the first (top)
input, and then add the third (bottom) input.

All nonscalar inputs must have the same dimensions. Scalar inputs will be
expanded to have the same dimensions as the other inputs.

• A spacer character creates extra space between ports on the block’s icon.

• If only addition of all inputs is required, then a numeric parameter value
equal to the number of inputs can be supplied instead of “+” characters.

• If only one vector is input, then a single “+” or “-” will collapse the vector
using the specified operation.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” in the Fixed-Point
Blockset documentation.

Data Type
Support

The Sum block accepts real or complex signals of any data type supported by
Simulink, as well as fixed-point data types. The inputs may be of different data
types unless the Require all inputs to have same data type parameter is
selected.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Sum
2-347

Sum

slref.book Page 348 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Icon shape
Designate the icon shape of the block.

List of signs
Enter as many plus (+) and minus (-) characters as there are inputs.
Addition is the default operation, so if you only want to add the inputs,
enter the number of input ports. For a single vector input, “+” or “-” will
collapse the vector using the specified operation.

You can manipulate the positions of the input ports on the block icon by
inserting spacers (|) between the signs in the List of signs parameter. For
example, “++|--” creates an extra space between the second and third
input ports.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
2-348

Sum

slref.book Page 349 M onday, Septem ber 27, 2004 3:20 PM
Require all inputs to have same data type
Select this parameter to require that all inputs must have the same data
type.

Output data type mode
Specify the output data type and scaling to be the same as the first input,
or inherit the data type and scaling from an internal rule or by
backpropagation. You can also choose a built-in data type from the
drop-down list. Lastly, if you choose Specify via dialog, the Output
data type, Output scaling value, and Lock output scaling against
changes by the autoscaling tool parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Output data type
mode parameter.
2-349

Sum

slref.book Page 350 M onday, Septem ber 27, 2004 3:20 PM
Output scaling value
Set the output scaling using binary point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Output
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Conversions
and Operations

The Sum block first converts the input data type(s) to the output data type
using the specified rounding and overflow modes, and then performs the
specified operations. Refer to “Rules for Arithmetic Operations” in the
Fixed-Point Blockset documentation for more information about the rules that
this block obeys when performing fixed-point operations.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Yes

States 0

Zero Crossing No
2-350

Switch

slref.book Page 351 M onday, Septem ber 27, 2004 3:20 PM
2SwitchPurpose Switch output between the first input and the third input based on the value
of the second input

Library Simulink Signal Routing and Fixed-Point Blockset Select

Description The Switch block passes through the first (top) input or the third (bottom)
input based on the value of the second (middle) input. The first and third inputs
are called data inputs. The second input is called the control input.

You select the conditions under which the first input is passed with the
Criteria for passing first input parameter. You can make the block check
whether the control input is greater than or equal to the threshold value,
purely greater than the threshold value, or nonzero. If the control input meets
the condition set in the Criteria for passing first input parameter, then the
first input is passed. Otherwise, the third input is passed.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” in the Fixed-Point
Blockset documentation.

Data Type
Support

The data and control inputs of a Switch block accept real or complex signals of
any data type supported by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Switch
2-351

Switch

slref.book Page 352 M onday, Septem ber 27, 2004 3:20 PM
Criteria for passing first input
Select the conditions under which the first input is passed. You can make
the block check whether the control input is greater than or equal to the
threshold value, purely greater than the threshold value, or nonzero. If the
control input meets the condition set in this parameter, then the first input
is passed. Otherwise, the third input is passed.

Threshold
Assign the switch threshold that determines which input is passed to the
output.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.

Require all data port inputs to have same data type
Select to require all data inputs to have the same data type.

Output data type mode
Choose to inherit the output data type and scaling by backpropagation or
by an internal rule. The internal rule causes the output of the block to have
the same data type and scaling as the input with the larger positive range.
2-352

Switch

slref.book Page 353 M onday, Septem ber 27, 2004 3:20 PM
Round integer calculations toward
Select the rounding mode for fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Characteristics

See Also Multi-Port Switch

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Zero Crossing No, unless Enable zero crossing detection is
selected
2-353

Switch Case

slref.book Page 354 M onday, Septem ber 27, 2004 3:20 PM
2Switch CasePurpose Implement a C-like switch control flow statement

Library Ports & Subsystems

Description The following shows a completed Simulink C-like switch control flow
statement in the subsystem of the Switch Case block.

A Switch Case block receives a single input, which it uses to form case
conditions that determine which the subsystem to execute. Each output port
case condition is attached to a Switch Case Action subsystem. The cases are
evaluated top down starting with the top case. If a case value (in brackets)
corresponds to the actual value of the input, its Switch Case Action subsystem
is executed.

The preceding switch control flow statement can be represented by the
following pseudocode:

switch (u1) {
case [u1=1]:

body_1;
break;

case [u1=2 or u1=3]:
body_23;
break;

default:
bodydefault;

}

2-354

Switch Case

slref.book Page 355 M onday, Septem ber 27, 2004 3:20 PM
You construct a Simulink switch control flow statement like the example
shown as follows:

1 Place a Switch Case block in the current system and attach the input port
labeled u1 to the source of the data you are evaluating.

2 Open the Block Parameters dialog of the Switch Case block and enter as
follows:

a Enter the Case conditions field with the individual cases.

Each case can be an integer or set of integers specified with MATLAB cell
notation. See the Case conditions field in the “Parameters and Dialog
Box” section of this reference.

b Select the Show default case check box to show a default case output
port on the Switch Case block.

If all other cases are false, the default case is taken.

3 Create a Switch Case Action subsystem for each case port you added to the
Switch Case block.

These consist of subsystems with Action Port blocks inside them. When you
place the Action Port block inside a subsystem, the subsystem becomes an
atomic subsystem with an input port labeled Action.

4 Connect each case output port and the default output port of the Switch
Case block to the Action port of an Action subsystem.

Each connected subsystem becomes a case body. This is indicated by the
change in label for the Switch Case Action subsystem block and the Action
Port block inside of it to the name case{}.

During simulation of a switch control flow statement, the Action signals
from the Switch Case block to each Switch Case Action subsystem turn from
solid to dashed.

5 In each Switch Case Action subsystem, enter the Simulink logic appropriate
to the case it handles.
2-355

Switch Case

slref.book Page 356 M onday, Septem ber 27, 2004 3:20 PM
Note As demonstrated in the preceding pseudocode example, cases for the
Switch Case block contain an implied break after their Switch Case Action
subsystems are executed. There is no fall-through behavior for the Simulink
switch control flow statement as found in standard C switch statements.

Data Type
Support

Input to the port labeled u1 of a Switch Case block can be a scalar value of any
data type supported by Simulink except boolean. The input to u1 can also be a
fixed-point data type. Noninteger inputs are truncated. For a discussion on the
data types supported by Simulink, refer to “Data Types Supported by
Simulink” in the Using Simulink documentation.

Data outputs are action signals to Switch Case Action subsystems that are
created with Action Port blocks and subsystems.

Parameters
and Dialog Box

Case conditions
Case conditions are specified using MATLAB cell notation where each cell
is a case condition consisting of integers or arrays of integers. In the
preceding dialog example, entering {1,[7,9,4]} specifies that output port
case[1] is run when the input value is 1, and output port case[7 9 4] is run
when the input value is 7, 9, or 4.

You can use colon notation to specify a range of case conditions. For
example, entering {[1:5]} specifies that output port case[1 2 3 4 5] is run
when the input value is 1, 2, 3, 4, or 5.
2-356

Switch Case

slref.book Page 357 M onday, Septem ber 27, 2004 3:20 PM
Depending on block size, cases with long lists of conditions are displayed in
shortened form in the Switch Case block, using a terminating ellipsis (…).

Show default case
If this check box is selected, the default output port appears as the last case
on the Switch Case block. This case is run when the input value does not
match any of the case values specified in the Case conditions field.

Enable zero crossing detection
Select to enable use of zero crossing detection. For more information, see
“Zero Crossing Detection” in the Using Simulink documentation.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized No

Zero Crossing Yes, if zero-crossing detection is enabled.
2-357

Switch Case Action Subsystem

slref.book Page 358 M onday, Septem ber 27, 2004 3:20 PM
2Switch Case Action SubsystemPurpose Represent a subsystem whose execution is triggered by a Switch Case block

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as a starting
point for creating a subsystem whose execution is triggered by a Switch Case
block. See the Switch Case block and “Control Flow Blocks” for more
information.
2-358

Terminator

slref.book Page 359 M onday, Septem ber 27, 2004 3:20 PM
2TerminatorPurpose Terminate an unconnected output port

Library Sinks

Description The Terminator block can be used to cap blocks whose output ports are not
connected to other blocks. If you run a simulation with blocks having
unconnected output ports, Simulink issues warning messages. Using
Terminator blocks to cap those blocks avoids warning messages.

Data Type
Support

A Terminator block accepts real or complex signals of any data type supported
by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes
2-359

Time-Based Linearization

slref.book Page 360 M onday, Septem ber 27, 2004 3:20 PM
2Time-Based LinearizationPurpose Generate linear models in the base workspace at specific times

Library Model-Wide Utilities

Description This block calls linmod or dlinmod to create a linear model for the system when
the simulation clock reaches the time specified by the Linearization time
parameter. No trimming is performed. The linear model is stored in the base
workspace as a structure, along with information about the operating point at
which the snapshot was taken. Multiple snapshots are appended to form an
array of structures.

The name of the structure used to save the snapshots is the name of the model
appended by _Timed_Based_Linearization, for example,
vdp_Timed_Based_Linearization. The structure has the follow fields:

Use the Trigger-Based Linearization block if you need to generate linear
models conditionally.

Field Description

a The A matrix of the linearization

b The B matrix of the linearization

c The C matrix of the linearization

d The D matrix of the linearization

StateName Names of the model’s states

OutputName Names of the model’s output ports

InputName Names of the model’s input ports

OperPoint A structure that specifies the operating point of the
linearization. The structure specifies the value of
the model’s states (OperPoint.x) and inputs
(OperPoint.u) at the operating point time
(OperPoint.t).

Ts The sample time of the linearization for a discrete
linearization
2-360

Time-Based Linearization

slref.book Page 361 M onday, Septem ber 27, 2004 3:20 PM
Data Type
Support

Not applicable.

Parameters
and Dialog Box

Linearization time
Time at which you want the block to generate a linear model. Enter a vector
of times if you want the block to generate linear models at more than one
time step.

Sample time (of linearized model)
Specify a sample time to create discrete-time linearizations of the model
(see “Discrete-Time System Linearization” on page 3-3).

Characteristics Sample Time Inherited from driving block

Dimensionalized No
2-361

To File

slref.book Page 362 M onday, Septem ber 27, 2004 3:20 PM
2To FilePurpose Write data to a file

Library Sinks

Description The To File block writes its input to a matrix in a MAT-file. The block writes
one column for each time step: the first row is the simulation time; the
remainder of the column is the input data, one data point for each element in
the input vector. The matrix has this form.

The From File block can use data written by a To File block without any
modifications. However, the form of the matrix expected by the From
Workspace block is the transposition of the data written by the To File block.

The block writes the data as well as the simulation time after the simulation is
completed. The block icon shows the name of the specified output file.

The amount of data written and the time steps at which the data is written are
determined by block parameters:

• The Decimation parameter allows you to write data at every nth sample,
where n is the decimation factor. The default decimation, 1, writes data at
every time step.

• The Sample time parameter allows you to specify a sampling interval at
which to collect points. This parameter is useful when you are using a
variable-step solver where the interval between time steps might not be the
same. The default value of -1 causes the block to inherit the sample time from
the driving block when determining the points to write. See “Specifying
Sample Time” in the online documentation for more information.

If the file exists at the time the simulation starts, the block overwrites its
contents.

Data Type
Support

A To File block accepts real signals of type double.

t1 t2 …tfinal

u11 u12 …u1final

…
un1 un2 …unfinal
2-362

To File

slref.book Page 363 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Filename
The fully qualified pathname or filename of the MAT-file in which to store
the output. On UNIX, the pathname may start with a tilde (~) character
signifying your home directory. The default filename is untitled.mat. If
you specify an unqualified filename, Simulink stores the file in MATLAB’s
working directory. (To determine the working directory, type pwd at the
MATLAB command line.)

Variable name
The name of the matrix contained in the named file.

Decimation
A decimation factor. The default value is 1.

Sample time
The sample period and offset at which to collect points. See “Specifying
Sample Time” in the online documentation for more information.

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes
2-363

To Workspace

slref.book Page 364 M onday, Septem ber 27, 2004 3:20 PM
2To WorkspacePurpose Write data to the workspace

Library Sinks

Description The To Workspace block writes its input to the workspace. The block writes its
output to an array or structure that has the name specified by the block’s
Variable name parameter. The Save format parameter determines the output
format.

Array
Selecting this option causes the To Workspace block to save the input as an
N-dimensional array where N is one more than the number of dimensions of
the input signal. For example, if the input signal is a 1-D array (i.e., a vector),
the resulting workspace array is two-dimensional. If the input signal is a 2-D
array (i.e., a matrix), the array is three-dimensional.

The way samples are stored in the array depends on whether the input signal
is a scalar or vector or a matrix. If the input is a scalar or a vector, each input
sample is output as a row of the array. For example, suppose that the name of
the output array is simout. Then, simout(1,:) corresponds to the first sample,
simout(2,:) corresponds to the second sample, etc. If the input signal is a
matrix, the third dimension of the workspace array corresponds to the values
of the input signal at specified sampling point. For example, suppose again that
simout is the name of the resulting workspace array. Then, simout(:,:,1) is
the value of the input signal at the first sample point; simout(:,:,2) is the
value of the input signal at the second sample point; etc.

The amount of data written and the time steps at which the data is written are
determined by block parameters:

• The Limit data points to last parameter indicates how many sample points
to save. If the simulation generates more data points than the specified
maximum, the simulation saves only the most recently generated samples.
To capture all the data, set this value to inf.

• The Decimation parameter allows you to write data at every nth sample,
where n is the decimation factor. The default decimation, 1, writes data at
every time step.
2-364

To Workspace

slref.book Page 365 M onday, Septem ber 27, 2004 3:20 PM
• The Sample time parameter allows you to specify a sampling interval at
which to collect points. This parameter is useful when you are using a
variable-step solver where the interval between time steps might not be the
same. The default value of -1 causes the block to inherit the sample time from
the driving block when determining the points to write. See “Specifying
Sample Time” in the online documentation for more information.

During the simulation, the block writes data to an internal buffer. When the
simulation is completed or paused, that data is written to the workspace. The
block icon shows the name of the array to which the data is written.

Structure
This format consists of a structure with three fields: time, signals, and
blockName. The time field is empty. The blockName field contains the name of
the To Workspace block. The signals field contains a structure with three
fields: values, dimensions, and label. The values field contains the array of
signal values. The dimensions field specifies the dimensions of the values
array. The label field contains the label of the input line.

Structure with Time
This format is the same as Structure except that the time field contains a
vector of simulation time steps.

Using Saved Data with a From Workspace Block
If the data written using a To Workspace block is intended to be played back in
another simulation using a From Workspace block, use the Structure with
Time format to save the data.

Examples
In a simulation where the start time is 0, the Maximum number of sample
points is 100, the Decimation is 1, and the Sample time is 0.5. The To
Workspace block collects a maximum of 100 points, at time values of 0, 0.5, 1.0,
1.5, …, seconds. Specifying a Decimation value of 1 directs the block to write
data at each step.
2-365

To Workspace

slref.book Page 366 M onday, Septem ber 27, 2004 3:20 PM
In a similar example, the Maximum number of sample points is 100 and the
Sample time is 0.5, but the Decimation is 5. In this example, the block collects
up to 100 points, at time values of 0, 2.5, 5.0, 7.5, …, seconds. Specifying a
Decimation value of 5 directs the block to write data at every fifth sample. The
sample time ensures that data is written at these points.

In another example, all parameters are as defined in the first example except
that the Limit data points to last is 3. In this case, only the last three sample
points collected are written to the workspace. If the simulation stop time is 100,
data corresponds to times 99.0, 99.5, and 100.0 seconds (three points).

Data Type
Support

A To Workspace block can save real or complex inputs of any data type
supported by Simulink, as well as fixed-point data types, to the MATLAB
workspace.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Variable name
The name of the array that holds the data.

Limit data points to last
The maximum number of input samples to be saved. The default is 1000
samples.
2-366

To Workspace

slref.book Page 367 M onday, Septem ber 27, 2004 3:20 PM
Decimation
A decimation factor. The default is 1.

Sample time
The sample time at which to collect points. See “Specifying Sample Time”
in the online documentation for more information.

Save format
Format in which to save simulation output to the workspace. The default
is structure.

Characteristics Sample Time Inherited

Dimensionalized Yes
2-367

Transfer Fcn

slref.book Page 368 M onday, Septem ber 27, 2004 3:20 PM
2Transfer FcnPurpose Implement a linear transfer function

Library Continuous

Description The Transfer Fcn block implements a transfer function where the input (u) and
output (y) can be expressed in transfer function form as the following equation

where nn and nd are the number of numerator and denominator coefficients,
respectively. num and den contain the coefficients of the numerator and
denominator in descending powers of s. num can be a vector or matrix, den
must be a vector, and both are specified as parameters on the block dialog box.
The order of the denominator must be greater than or equal to the order of the
numerator.

A Transfer Fcn block takes a scalar input. If the numerator of the block’s
transfer function is a vector, the block’s output is also scalar. However, if the
numerator is a matrix, the transfer function expands the input into an output
vector equal in width to the number of rows in the numerator. For example, a
two-row numerator results in a block with scalar input and vector output. The
width of the output vector is two.

Initial conditions are preset to zero. If you need to specify initial conditions,
convert to state-space form using tf2ss and use the State-Space block. The
tf2ss utility provides the A, B, C, and D matrices for the system. For more
information, type help tf2ss or consult the Control System Toolbox
documentation.

Transfer Fcn Block Icon
The numerator and denominator are displayed on the Transfer Fcn block icon
depending on how they are specified:

• If each is specified as an expression, a vector, or a variable enclosed in
parentheses, the icon shows the transfer function with the specified
coefficients and powers of s. If you specify a variable in parentheses, the
variable is evaluated. For example, if you specify Numerator as [3,2,1] and

H s() y s()
u s()

num s()
den s()

num 1()snn 1– num 2()snn 2– … num nn()+ + +

den 1()snd 1– den 2()snd 2– … den nd()+ + +
--= = =
2-368

Transfer Fcn

slref.book Page 369 M onday, Septem ber 27, 2004 3:20 PM
Denominator as (den) where den is [7,5,3,1], the block icon looks like
this:

• If each is specified as a variable, the icon shows the variable name followed
by (s). For example, if you specify Numerator as num and Denominator as
den, the block icon looks like this:

Specifying the Absolute Tolerance for the Block’s States
By default Simulink uses the absolute tolerance value specified in the
Simulation Parameters dialog box (see “Error Tolerances”) to solve the states
of the Transfer Fcn block. If this value does not provide sufficient error control,
specify a more appropriate value in the Absolute tolerance field of the
Transfer Fcn block’s dialog box. The value that you specify is used to solve all
the block’s states.

Data Type
Support

A Transfer Fcn block accepts and outputs signals of type double.

Parameters
and Dialog Box

Numerator
The row vector of numerator coefficients. A matrix with multiple rows can
be specified to generate multiple output. The default is [1].
2-369

Transfer Fcn

slref.book Page 370 M onday, Septem ber 27, 2004 3:20 PM
Denominator
The row vector of denominator coefficients. The default is [1 1].

Absolute tolerance
Absolute tolerance used to solve the block’s states. You can enter auto or a
numeric value. If you enter auto, Simulink determines the absolute
tolerance (see “Error Tolerances”). If you enter a numeric value, Simulink
uses the specified value to solve the block’s states. Note that a numeric
value overrides the setting for the absolute tolerance in the Simulation
Parameters dialog box.

Characteristics Direct Feedthrough Only if the lengths of the Numerator and
Denominator parameters are equal

Sample Time Continuous

Scalar Expansion No

States Length of Denominator -1

Dimensionalized Yes, in the sense that the block expands scalar input
into vector output when the transfer function
numerator is a matrix. See the preceding block
description.

Zero Crossing No
2-370

Transport Delay

slref.book Page 371 M onday, Septem ber 27, 2004 3:20 PM
2Transport DelayPurpose Delay the input by a given amount of time

Library Continuous

Description The Transport Delay block delays the input by a specified amount of time. It
can be used to simulate a time delay.

At the start of the simulation, the block outputs the Initial input parameter
until the simulation time exceeds the Time delay parameter, when the block
begins generating the delayed input. The Time delay parameter must be
nonnegative.

The block stores input points and simulation times during a simulation in a
buffer whose initial size is defined by the Initial buffer size parameter. If the
number of points exceeds the buffer size, the block allocates additional memory
and Simulink displays a message after the simulation that indicates the total
buffer size needed. Because allocating memory slows down the simulation,
define this parameter value carefully if simulation speed is an issue. For long
time delays, this block might use a large amount of memory, particularly for a
dimensionalized input.

When output is required at a time that does not correspond to the times of the
stored input values, the block interpolates linearly between points. When the
delay is smaller than the step size, the block extrapolates from the last output
point, which can produce inaccurate results. Because the block does not have
direct feedthrough, it cannot use the current input to calculate its output value.
To illustrate this point, consider a fixed-step simulation with a step size of 1
and the current time at t = 5. If the delay is 0.5, the block needs to generate a
point at t = 4.5. Because the most recent stored time value is at t = 4, the block
performs forward extrapolation.

The Transport Delay block does not interpolate discrete signals. Instead, it
returns the discrete value at t - tdelay.

This block differs from the Unit Delay block, which delays and holds the output
on sample hits only.

Using linmod to linearize a model that contains a Transport Delay block can be
troublesome. For more information about ways to avoid the problem, see
“Linearizing Models” in Using Simulink.
2-371

Transport Delay

slref.book Page 372 M onday, Septem ber 27, 2004 3:20 PM
Data Type
Support

A Transport Delay block accepts and outputs real signals of type double.

Parameters
and Dialog Box

Time delay
The amount of simulation time that the input signal is delayed before being
propagated to the output. The value must be nonnegative.

Initial input
The output generated by the block between the start of the simulation and
the Time delay.

Initial buffer size
The initial memory allocation for the number of points to store.

Pade order (for linearization)
The order of the Pade approximation for linearization routines. The default
value is 0, which results in a unity gain with no dynamic states. Setting the
order to a positive integer n adds n states to your model, but results in a
more accurate linear model of the transport delay.

Direct feedthrough of input during linearization
Causes the block to output its input during linearization and trim. This
sets the block’s mode to direct feedthrough.
2-372

Transport Delay

slref.book Page 373 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough No

Sample Time Continuous

Scalar Expansion Of input and all parameters except Initial buffer size

Dimensionalized Yes

Zero Crossing No
2-373

Trigger

slref.book Page 374 M onday, Septem ber 27, 2004 3:20 PM
2TriggerPurpose Add a trigger port to a subsystem

Library Ports & Subsystems

Description Adding a Trigger block to a subsystem makes it a triggered subsystem. A
triggered subsystem executes once on each integration step when the value of
the signal that passes through the trigger port changes in a specifiable way
(described below). A subsystem can contain no more than one Trigger block.
For more information about triggered subsystems, see “Creating a Model” in
Using Simulink.

The Trigger type parameter allows you to choose the type of event that
triggers execution of the subsystem:

• rising triggers execution of the subsystem when the control signal rises
from a negative or zero value to a positive value (or zero if the initial value
is negative).

• falling triggers execution of the subsystem when the control signal falls
from a positive or a zero value to a negative value (or zero if the initial value
is positive).

• either triggers execution of the subsystem when the signal is either rising
or falling.

• function-call causes execution of the subsystem to be controlled by logic
internal to an S-function (for more information, see “Function-Call
Subsystems”).

You can output the trigger signal by selecting the Show output port check box.
Selecting this option allows the system to determine what caused the trigger.
The width of the signal is the width of the triggering signal. The signal value is

• 1 for a signal that causes a rising trigger

• -1 for a signal that causes a falling trigger

• 2 for a function-call trigger

• 0 otherwise

Data Type
Support

A Trigger block accepts signals of any data type supported by Simulink, as well
as fixed-point data types.
2-374

Trigger

slref.book Page 375 M onday, Septem ber 27, 2004 3:20 PM
For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Trigger type
The type of event that triggers execution of the subsystem.

States when enabling
This option is enabled only if you select function-call as the block’s
trigger type. It specifies whether a function-call enable trigger causes
Simulink to reset the states of the subsystem containing this Trigger block
to their initial values. Selecting held (the default) causes Simulink to leave
the states at their current values. Selecting reset for this option causes
Simulink to reset the states. Selecting inherit causes the trigger’s held/
reset setting to be the same as that of the function-call initiator’s parent
subsystem, for example, an enabled subsystem, or the model’s root system
if the function-call initiator is at the model’s root level. If the parent of the
initiator is the model root, the inherited setting is held. If the trigger has
multiple initiators and its States when enabling setting is inherit, the
parents of all initiators must have the same held/reset setting, i.e., either
all held or all reset. For more information about the States when
enabling setting, see “Function-Call Subsystems” in the “Implementing
Block Features” section of Writing S-Functions.

Show output port
2-375

Trigger

slref.book Page 376 M onday, Septem ber 27, 2004 3:20 PM
If selected, Simulink draws the Trigger block output port and outputs the
trigger signal.

Output data type
Specifies the data type (double or int8) of the trigger output. If you select
auto, Simulink sets the data type to be the same as that of the port to which
the output is connected. If the port’s data type is not double or int8,
Simulink signals an error.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Sample time type
This parameter is active only when Trigger type is set to function-call.
Its value may be triggered or periodic. Select periodic if the caller of the
parent function-call subsystem, for example, a Stateflow chart, calls the
subsystem once per time step when the subsystem is active (enabled).
Otherwise, select triggered. See “Using Bind Actions to Control
Function-Call Subsystems” in Using Stateflow and the “Function-Call
Subsystems” section of Writing S-functions for more information.

Sample time
This parameter is active only when the Trigger type is function-call and
the Sample time type is periodic. Set this parameter to the sample time
at which you want the function-call subsystem that contains this block to
be called.

Characteristics Sample Time Determined by the sample time parameter if the
trigger type is function-call and the sample time type
is periodic; otherwise, by the signal at the trigger
port.

Dimensionalized Yes
2-376

Trigger-Based Linearization

slref.book Page 377 M onday, Septem ber 27, 2004 3:20 PM
2Trigger-Based LinearizationPurpose Generate linear models in the base workspace when triggered

Library Model-Wide Utilities

Description When triggered, this block calls linmod or dlinmod to create a linear model for
the system at the current operating point. No trimming is performed. The
linear model is stored in the base workspace as a structure, along with
information about the operating point at which the snapshot was taken.
Multiple snapshots are appended to form an array of structures.

The name of the structure used to save the snapshots is the name of the model
appended by _Trigger_Based_Linearization, for example,
vdp_Trigger_Based_Linearization. The structure has the follow fields:

Use the Time-Based Linearization block to generate linear models at
predetermined times.

Field Description

a The A matrix of the linearization

b The B matrix of the linearization

c The C matrix of the linearization

d The D matrix of the linearization

StateName Names of the model’s states

OutputName Names of the model’s output ports

InputName Names of the model’s input ports

OperPoint A structure that specifies the operating point of the
linearization. The structure specifies the value of
the model’s states (OperPoint.x) and inputs
(OperPoint.u) at the operating point time
(OperPoint.t).

Ts The sample time of the linearization for a discrete
linearization
2-377

Trigger-Based Linearization

slref.book Page 378 M onday, Septem ber 27, 2004 3:20 PM
Data Type
Support

The trigger port accepts signals of any data type supported by Simulink.

Parameters
and Dialog Box

Trigger type
Type of event on the trigger input signal that triggers generation of a linear
model. See the Trigger type parameter of the Trigger block for an
explanation of the various trigger types that you can select.

Sample time (of linearized model)
Specify a sample time to create a discrete-time linearization of the model
(see “Discrete-Time System Linearization” on page 3-3).

Characteristics Sample Time Inherited from driving block

Dimensionalized No
2-378

Triggered Subsystem

slref.book Page 379 M onday, Septem ber 27, 2004 3:20 PM
2Triggered SubsystemPurpose Represent a subsystem whose execution is triggered by external input

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as the starting
point for creating a triggered subsystem (see “Triggered Subsystems”).
2-379

Trigonometric Function

slref.book Page 380 M onday, Septem ber 27, 2004 3:20 PM
2Trigonometric FunctionPurpose Perform a trigonometric function

Library Math Operations

Description The Trigonometric Function block performs numerous common trigonometric
functions.

You can select one of these functions from the Function list: sin, cos, tan,
asin, acos, atan, atan2, sinh, cosh, and tanh. The block output is the result of
the operation of the function on the input or inputs.

The name of the function appears on the block icon. Simulink automatically
draws the appropriate number of input ports. The block accepts and outputs
real or complex signals of type double.

Use the Trigonometric Function block instead of the Fcn block when you want
dimensionalized output, because the Fcn block can produce only scalar output.

Data Type
Support

A Trigonometric Function block accepts and outputs real or complex signals of
type double.

Parameters
and Dialog Box

Function
The trigonometric function.

Output signal type
Type of signal (complex or real) to output.
2-380

Trigonometric Function

slref.book Page 381 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of the input when the function requires two inputs

Dimensionalized Yes

Zero Crossing No
2-381

Uniform Random Number

slref.book Page 382 M onday, Septem ber 27, 2004 3:20 PM
2Uniform Random NumberPurpose Generate uniformly distributed random numbers

Library Sources

Description The Uniform Random Number block generates uniformly distributed random
numbers over a specifiable interval with a specifiable starting seed. The seed
is reset each time a simulation starts. The generated sequence is repeatable
and can be produced by any Uniform Random Number block with the same
seed and parameters. To generate normally distributed random numbers, use
the Random Number block.

Avoid integrating a random signal, because solvers are meant to integrate
relatively smooth signals. Instead, use the Band-Limited White Noise block.

The block’s numeric parameters must be of the same dimensions after scalar
expansion. If the Interpret vector parameters as 1-D option is off, the block
outputs a signal of the same dimensions and dimensionality as the parameters.
If the Interpret vector parameters as 1-D option is on and the numeric
parameters are row or column vectors (i.e., single row or column 2-D arrays),
the block outputs a vector (1-D array) signal; otherwise, the block outputs a
signal of the same dimensions as the parameters.

Data Type
Support

A Uniform Random Number block outputs a real signal of type double.

Parameters
and Dialog Box
2-382

Uniform Random Number

slref.book Page 383 M onday, Septem ber 27, 2004 3:20 PM
Opening this dialog box causes a running simulation to pause. See “Changing
Source Block Parameters” in the online Simulink documentation for details.

Minimum
The minimum of the interval. The default is -1.

Maximum
The maximum of the interval. The default is 1.

Initial seed
The starting seed for the random number generator. The default is 0.

Sample time
The sample period. The default is 0. See “Specifying Sample Time” in the
online documentation for more information.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Step block’s numeric
parameters result in a vector output signal; otherwise, the block outputs a
signal of the same dimensionality as the parameters. If this option is not
selected, the block always outputs a signal of the same dimensionality as
the block’s numeric parameters.

Characteristics Sample Time Continuous, discrete, or inherited

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No
2-383

Unit Delay

slref.book Page 384 M onday, Septem ber 27, 2004 3:20 PM
2Unit DelayPurpose Delay a signal one sample period

Library Simulink Discrete and Fixed-Point Blockset Delays & Holds

Description The Unit Delay block delays its input by the specified sample period. This block
is equivalent to the z-1 discrete-time operator. The block accepts one input and
generates one output, which can be either both scalar or both vector. If the
input is a vector, all elements of the vector are delayed by the same sample
period.

You specify the block output for the first sampling period with the Initial
conditions parameter. Careful selection of this parameter can minimize
unwanted output behavior. The time between samples is specified with the
Sample time parameter. A setting of -1 means the sample time is inherited.

The Unit Delay block provides a mechanism for discretizing one or more
signals in time, or for resampling the signal at a different rate. If your model
contains multirate transitions, then you must add Unit Delay blocks between
the slow-to-fast transitions. The sample rate of the Unit Delay block must be
set to that of the slower block. For fast-to-slow transitions, use the Zero Order
Hold block. For more information about multirate transitions, refer to the
Simulink or the Real-Time Workshop documentation.

Note The Unit Delay block accepts continuous signals. When it has a
continuous sample time, the block is equivalent to the Simulink Memory
block.

Data Type
Support

The Unit Delay block accepts real or complex signals of any data type
supported by Simulink, as well as fixed-point data types. If the data type of the
input signal is user-defined, the initial condition must be zero.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

z

1

Unit Delay
2-384

Unit Delay

slref.book Page 385 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Initial conditions
The output of the simulation for the first sampling period, during which the
output of the Unit Delay block is otherwise undefined.

Sample time
The time interval between samples. To inherit the sample time, set this
parameter to -1. See “Specifying Sample Time” in the online
documentation for more information.

Conversions
and Operations

The Initial conditions parameter is converted from a double to the input data
type offline using round-to-nearest and saturation.

Characteristics Dimensionalized Yes

Direct Feedthrough No

Sample Time Discrete or continuous. When inheriting a continuous
signal, this block acts as a Simulink Memory block.

Scalar Expansion Of input or initial conditions

States Yes—inherited from driving block for nonfixed-point
data types.

Zero Crossing No
2-385

Variable Transport Delay

slref.book Page 386 M onday, Septem ber 27, 2004 3:20 PM
2Variable Transport DelayPurpose Delay the input by a variable amount of time

Library Continuous

Description The Variable Transport Delay block can be used to simulate a variable time
delay. The block accepts two inputs: the first input is the signal that passes
through the block; the second input is the time delay, as shown in this icon.

The Maximum delay parameter defines the largest value the time delay input
can have. The block clips values of the delay that exceed this value. The
Maximum delay must be greater than or equal to zero. If the time delay
becomes negative, the block clips it to zero and issues a warning message.

During the simulation, the block stores time and input value pairs in an
internal buffer. At the start of the simulation, the block outputs the Initial
input parameter until the simulation time exceeds the time delay input. Then,
at each simulation step the block outputs the signal at the time that
corresponds to the current simulation time minus the delay time.

When output is required at a time that does not correspond to the times of the
stored input values, the block interpolates linearly between points. If the time
delay is smaller than the step size, the block extrapolates an output point. This
can result in less accurate results. The block cannot use the current input to
calculate its output value because the block does not have direct feedthrough
at this port. To illustrate this point, consider a fixed-step simulation with a step
size of 1 and the current time at t = 5. If the delay is 0.5, the block needs to
generate a point at t = 4.5. Because the most recent stored time value is at t = 4,
the block performs forward extrapolation.

The Variable Transport Delay block does not interpolate discrete signals.
Instead, it returns the discrete value at t - tdelay.

Data Type
Support

A Variable Transport Delay block accepts and outputs real signals of type
double.
2-386

Variable Transport Delay

slref.book Page 387 M onday, Septem ber 27, 2004 3:20 PM
Parameters
and Dialog Box

Maximum delay
The maximum value of the time delay input. The value cannot be negative.
The default is 10.

Initial input
The output generated by the block until the simulation time first exceeds
the time delay input. The default is 0.

Buffer size
The number of points the block can store. The default is 1024.

Pade order (for linearization)
The order of the Pade approximation for linearization routines. The default
value is 0, which results in a unity gain with no dynamic states. Setting the
order to a positive integer n adds n states to your model, but results in a
more accurate linear model of the transport delay.

Direct feedthrough of input during linearization
Causes the block to output its input during linearization and trim. This
sets the block’s mode to direct feedthrough.

Characteristics Direct Feedthrough Yes, of the time delay (second) input

Sample Time Continuous
2-387

Variable Transport Delay

slref.book Page 388 M onday, Septem ber 27, 2004 3:20 PM
Scalar Expansion Of input and all parameters except Buffer size

Dimensionalized Yes

Zero Crossing No
2-388

While Iterator

slref.book Page 389 M onday, Septem ber 27, 2004 3:20 PM
2While IteratorPurpose Repeatedly execute the contents of a subsystem at the current time step while
a condition is satisfied.

Library Ports & Subsystems/While Subsystem

Description The While Iterator block, when placed in a subsystem, repeatedly executes the
contents of the subsystem at the current time step while a specified condition
is true.

Note Placing a While Iterator block in a subsystem makes it an atomic
subsystem if it is not already an atomic subsystem.

You can use this block to implement the block-diagram equivalent of a C
program while or do-while loop. In particular, the block’s While loop style
parameter allows you to choose either of the following while loop modes:

• do-while

In this mode, the While Iterator block has one input, the while condition
input, whose source must reside in the subsystem. At each time step, the
block runs all the blocks in the subsystem once and then checks whether the
while condition input is true. If the input is true, the iterator block runs the
blocks in the subsystem again. This process continues as long as the while
condition input is true and the number of iterations is less than or equal to
the iterator block’s Maximum number of iterations parameter.

• while

In this mode, the iterator block has two inputs: a while condition input and
an initial condition (IC) input. The source of the initial condition signal must
be external to the while subsystem. At the beginning of the time step, if the
IC input is true, the iterator block executes the contents of the subsystem
and then checks the while condition input. If the while condition input is
true, the iterator executes the subsystem again. This process continues as
long as the while condition input is true and the number of iterations is less
than or equal to the iterator block’s Maximum number of iterations
parameter. If the IC input is false at the beginning of a time step, the iterator
does not execute the contents of the subsystem during the time step.
2-389

While Iterator

slref.book Page 390 M onday, Septem ber 27, 2004 3:20 PM
The While Iterator block can optionally output the current iteration number,
starting at 1. The following example uses this capability to compute N, where
N is the first N integers whose sum is less than 100.

This example is the diagrammatic equivalent to the following pseudocode.

max_sum = 100;
sum = 0;
iteration_number = 0;
cond = (max_sum > 0);
while (cond != 0) {

iteration_number = iteration_number + 1;
sum = sum + iteration_number;
if (sum > max_sum OR iteration_number > max_iterations)

cond = 0;
}

Data Type
Support

Acceptable data inputs for the condition ports are any type supported by
Simulink, as well as any fixed-point type, that includes a 0 value. For a
discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.
2-390

While Iterator

slref.book Page 391 M onday, Septem ber 27, 2004 3:20 PM
The While Iterator block’s optional output port can output any of the following
data types: double, int32, int16, or int8.

Parameters
and Dialog Box

Maximum number of iterations
The maximum number of iterations allowed. Use a value of -1 to allow any
number of iterations as long as the while condition input is true.

While loop style
Specifies the type of while loop implemented by this block. See the
preceding block description for more information.

States when starting
Set this field to reset if you want the iterator block to reset the states of
the blocks in the while subsystem to their initial values at the beginning of
each time step (i.e., before executing the first loop iteration in the current
time step). To cause the states of blocks in the subsystem to persist across
time steps, set this field to held (the default).

Show iteration number port
If this check box is selected (the default), the While Iterator block outputs
its iteration value. This value starts at 1 and is incremented by 1 for each
succeeding iteration.
2-391

While Iterator

slref.book Page 392 M onday, Septem ber 27, 2004 3:20 PM
Output data type
If the Show iteration number port check box is selected (the default),
this field is enabled. Use it to set the data type of the iteration number
output to int32, int16, int8, or double.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized No

Zero Crossing No
2-392

While Iterator Subsystem

slref.book Page 393 M onday, Septem ber 27, 2004 3:20 PM
2While Iterator SubsystemPurpose Represent a subsystem that executes repeatedly while a condition is satisfied
during a simulation time step

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as a starting
point for creating a subsystem that executes repeatedly while a condition is
satisfied during a simulation time step. See the While Iterator block and
“Control Flow Blocks” for more information.
2-393

Width

slref.book Page 394 M onday, Septem ber 27, 2004 3:20 PM
2WidthPurpose Output the width of the input vector

Library Signal Attributes

Description The Width block generates as output the width of its input vector.

Data Type
Support

The Width block accepts real or complex signals of any data type supported by
Simulink, as well as fixed-point data types. The Width block supports
mixed-type signal vectors. This block outputs real signals of type double.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Characteristics Sample Time Constant

Dimensionalized Yes
2-394

XY Graph

slref.book Page 395 M onday, Septem ber 27, 2004 3:20 PM
2XY Graph Purpose Display an X-Y plot of signals using a MATLAB figure window

Library Sinks

Description The XY Graph block displays an X-Y plot of its inputs in a MATLAB figure
window.

The block has two scalar inputs. The block plots data in the first input (the x
direction) against data in the second input (the y direction). This block is useful
for examining limit cycles and other two-state data. Data outside the specified
range is not displayed.

Simulink opens a figure window for each XY Graph block in the model at the
start of the simulation.

For a demo that illustrates the use of the XY Graph block, enter lorenzs in the
command window.

Data Type
Support

An XY Graph block accepts real signals of type double.

Parameters
and Dialog Box

x-min
The minimum x-axis value. The default is -1.

x-max
The maximum x-axis value. The default is 1.
2-395

XY Graph

slref.book Page 396 M onday, Septem ber 27, 2004 3:20 PM
y-min
The minimum y-axis value. The default is -1.

y-max
The maximum y-axis value. The default is 1.

Sample time
The time interval between samples. The default is -1, which means that
the sample time is determined by the driving block. See “Specifying Sample
Time” in the online documentation for more information.

Characteristics Sample Time Inherited from driving block

States 0
2-396

Zero-Order Hold

slref.book Page 397 M onday, Septem ber 27, 2004 3:20 PM
2Zero-Order HoldPurpose Implement a zero-order hold of one sample period

Library Simulink Discrete and Fixed-Point Blockset Delays & Holds

Description The Zero-Order Hold block samples and holds its input for the specified sample
period. The block accepts one input and generates one output, both of which
can be scalar or vector. If the input is a vector, all elements of the vector are
held for the same sample period.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.

This block provides a mechanism for discretizing one or more signals in time,
or resampling the signal at a different rate. If your model contains multirate
transitions, you must add Zero-Order Hold blocks between the fast-to-slow
transitions. The sample rate of the Zero-Order Hold must be set to that of the
slower block. For slow-to-fast transitions, use the Unit Delay block. For more
information about multirate transitions, refer to the Simulink or the
Real-Time Workshop documentation.

Data Type
Support

The Zero-Order Hold block accepts real or complex signals of any data type
supported by Simulink, as well as fixed-point data types.

For a discussion on the data types supported by Simulink, refer to “Data Types
Supported by Simulink” in the Using Simulink documentation.

Parameters
and Dialog Box

Sample time
Specify the time between samples. A value of -1 means the sample time is
inherited. See “Specifying Sample Time” in the online documentation for
more information.

Zero−Order
Hold
2-397

Zero-Order Hold

slref.book Page 398 M onday, Septem ber 27, 2004 3:20 PM
Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Discrete

Scalar Expansion No

Zero Crossing No
2-398

Zero-Pole

slref.book Page 399 M onday, Septem ber 27, 2004 3:20 PM
2Zero-PolePurpose Implement a transfer function specified in terms of poles and zeros

Library Continuous

Description The Zero-Pole block implements a system with the specified zeros, poles, and
gain in terms of the Laplace operator s.

A transfer function can be expressed in factored or zero-pole-gain form, which,
for a single-input single-output system in MATLAB, is

where Z represents the zeros vector, P the poles vector, and K the gain. Z can
be a vector or matrix, P must be a vector, K can be a scalar or vector whose
length equals the number of rows in Z. The number of poles must be greater
than or equal to the number of zeros. If the poles and zeros are complex, they
must be complex conjugate pairs.

Block input and output widths are equal to the number of rows in the zeros
matrix.

The Zero-Pole Block Icon
The Zero-Pole block displays the transfer function in its icon depending on how
the parameters are specified:

• If each is specified as an expression or a vector, the icon shows the transfer
function with the specified zeros, poles, and gain. If you specify a variable in
parentheses, the variable is evaluated.

For example, if you specify Zeros as [3,2,1], Poles as (poles), where poles
is defined in the workspace as [7,5,3,1], and Gain as gain, the icon looks
like this:

H s() KZ s()
P x()
------------ K s Z 1()–() s Z 2()–()… s Z m()–()

s P 1()–() s P 2()–()… s P n()–()
---= =
2-399

Zero-Pole

slref.book Page 400 M onday, Septem ber 27, 2004 3:20 PM
• If each is specified as a variable, the icon shows the variable name followed
by (s) if appropriate. For example, if you specify Zeros as zeros, Poles as
poles, and Gain as gain, the icon looks like this.

Specifying the Absolute Tolerance for the Block’s States
By default, Simulink uses the absolute tolerance value specified in the
Simulation Parameters dialog box (see “Error Tolerances”) to solve the states
of the Zero-Pole block. If this value does not provide sufficient error control,
specify a more appropriate value in the Absolute tolerance field of the
Zero-Pole block’s dialog box. The value that you specify is used to solve all the
block’s states.

Data Type
Support

A Zero-Pole block accepts real signals of type double.

Parameters
and Dialog Box

Zeros
The matrix of zeros. The default is [1].

Poles
The vector of poles. The default is [0 -1].
2-400

Zero-Pole

slref.book Page 401 M onday, Septem ber 27, 2004 3:20 PM
Gain
The vector of gains. The default is [1].

Absolute tolerance
Absolute tolerance used to solve the block’s states. You can enter auto or a
numeric value. If you enter auto, Simulink determines the absolute
tolerance (see “Error Tolerances”). If you enter a numeric value, Simulink
uses the specified value to solve the block’s states. Note that a numeric
value overrides the setting for the absolute tolerance in the Simulation
Parameters dialog box.

Characteristics Direct Feedthrough Only if the lengths of the Poles and Zeros
parameters are equal

Sample Time Continuous

Scalar Expansion No

States Length of Poles vector

Dimensionalized No

Zero Crossing No
2-401

Zero-Pole

slref.book Page 402 M onday, Septem ber 27, 2004 3:20 PM
2-402

slref.book Page 1 M onday, September 27, 2004 3:20 PM
3

Linearization and
Trimming Commands

This section describes commands that you can use to linearize or trim a Simulink model. See
“Analyzing Simulation Results” for more information on these commands.

linmod, dlinmod, linmod2

slref.book Page 2 M onday, September 27, 2004 3:20 PM
3linmod, dlinmod, linmod2Purpose Extract the continuous- or discrete-time linear state-space model of a system
around an operating point

Syntax argout = linmod('sys', x, u, para);
argout = linmod('sys', x, u, 'v5', para);
argout = linmod('sys', x, u, 'v5', para, xpert, upert);

argout = dlinmod('sys', x, u);
argout = dlinmod('sys',Ts, x, u, 'v5', para);
argout = dlinmod('sys', x, u, 'v5', para, xpert, upert);

argout = linmod2('sys', x, u, para);

Arguments sys The name of the Simulink system from which the linear model
is to be extracted.

x and u The state and the input vectors. If specified, they set the
operating point at which the linear model is to be extracted.

Ts Sample time of the discrete-time linearized model

'v5' An optional argument that invokes the perturbation algorithm
created prior to MATLAB 5.3.

para A 3-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value used to
perform the perturbation of the states and the inputs of the
model. This is valid for linearizations using the 'v5' flag. The
default value is 1e-05.

• para(2) — Linearization time. For models that are functions
of time, this parameter may be set with a nonnegative value
of t at which the linear model is to be obtained. The default
value is 0.

• para(3) — Set para(3)=1 to remove extra states associated
with blocks that have no path from input to output. The
default value is 0.
3-2

linmod, dlinmod, linmod2

slref.book Page 3 M onday, September 27, 2004 3:20 PM
Description linmod and dlinmod compute a linear state space model by linearizing each
block in a model individually. linmod2 computes a linear state-space model by
perturbing the model inputs and model states, and uses an advanced algorithm
to reduce truncation error.

linmod obtains linear models from systems of ordinary differential equations
described as Simulink models. Inputs and outputs are denoted in Simulink
block diagrams using Inport and Outport blocks.

The default algorithm uses exact linearization for most blocks, and should be
more accurate in most cases. The default algorithm also allows for special
treatment of problematic blocks such as the Transport Delay and the
Quantizer. See the mask dialog of these blocks for more information and
options.

Discrete-Time System Linearization
The function dlinmod can linearize discrete, multirate, and hybrid continuous
and discrete systems at any given sampling time. Use the same calling syntax
for dlinmod as for linmod, but insert the sample time at which to perform the
linearization as the second argument. For example,

xpert and
upert

The perturbation values used to perform the perturbation of all
the states and inputs of the model. The default values are

xpert = para(1) + 1e-3 - 3*para(1)*abs(x)
upert = para(1) + 1e-3*para(1)*abs(u)

argout linmod, dlinmod, and linmod2 all return state-space, transfer
function, and MATLAB data structure representations of the
linearized system, depending on how you specify the output
(left-hand) side of the equation. Using linmod as an example:

• [A,B,C,D] = linmod('sys', x, u) obtains the linearized
model of sys around an operating point with the specified
state variables x and the input u. If you omit x and u, the
default values are zero.

• [num, den] = linmod('sys', x, u) returns the linearized
model in transfer function form.

• sys_struc = linmod('sys', x, u) returns a structure that
contains the linearized model, including state names, input
and output names, and information about the operating point.
3-3

linmod, dlinmod, linmod2

slref.book Page 4 M onday, September 27, 2004 3:20 PM
[Ad,Bd,Cd,Dd] = dlinmod('sys', Ts, x, u);

produces a discrete state-space model at the sampling time Ts and the
operating point given by the state vector x and input vector u. To obtain a
continuous model approximation of a discrete system, set Ts to 0.

For systems composed of linear, multirate, discrete, and continuous blocks,
dlinmod produces linear models having identical frequency and time responses
(for constant inputs) at the converted sampling time Ts, provided that

• Ts is an integer multiple of all the sampling times in the system.

• The system is stable.

For systems that do not meet the first condition, in general the linearization is
a time-varying system, which cannot be represented with the [A,B,C,D]
state-space model that dlinmod returns.

Computing the eigenvalues of the linearized matrix Ad provides an indication
of the stability of the system. The system is stable if Ts>0 and the eigenvalues
are within the unit circle, as determined by this statement:

all(abs(eig(Ad))) < 1

Likewise, the system is stable if Ts = 0 and the eigenvalues are in the left half
plane, as determined by this statement:

all(real(eig(Ad))) < 0

When the system is unstable and the sample time is not an integer multiple of
the other sampling times, dlinmod produces Ad and Bd matrices, which can be
complex. The eigenvalues of the Ad matrix in this case still, however, provide a
good indication of stability.

You can use dlinmod to convert the sample times of a system to other values or
to convert a linear discrete system to a continuous system or vice versa.

You can find the frequency response of a continuous or discrete system by using
the bode command.

Notes By default, the system time is set to zero. For systems that are dependent on
time, you can set the variable para to a two-element vector, where the second
element is used to set the value of t at which to obtain the linear model.
3-4

linmod, dlinmod, linmod2

slref.book Page 5 M onday, September 27, 2004 3:20 PM
The ordering of the states from the nonlinear model to the linear model is
maintained. For Simulink systems, a string variable that contains the block
name associated with each state can be obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name associated
with the ith state. Inputs and outputs are numbered sequentially on the
diagram.

For single-input multi-output systems, you can convert to transfer function
form using the routine ss2tf or to zero-pole form using ss2zp. You can also
convert the linearized models to LTI objects using ss. This function produces
an LTI object in state-space form that can be further converted to transfer
function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod and dlinmod handle Transport Delay blocks
by replacing the linearization of the blocks with a Pade approximation. For the
'v5' algorithm, linearization of a model that contains Derivative or Transport
Delay blocks can be troublesome. For more information, see “Linearizing
Models”.
3-5

trim

slref.book Page 6 M onday, September 27, 2004 3:20 PM
3trimPurpose Find a trim point of a dynamic system

Syntax [x,u,y,dx] = trim('sys')
[x,u,y,dx] = trim('sys',x0,u0,y0)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options,t)
[x,u,y,dx,options] = trim('sys',...)

Description A trim point, also known as an equilibrium point, is a point in the parameter
space of a dynamic system at which the system is in a steady state. For
example, a trim point of an aircraft is a setting of its controls that causes the
aircraft to fly straight and level. Mathematically, a trim point is a point where
the system’s state derivatives equal zero. trim starts from an initial point and
searches, using a sequential quadratic programming algorithm, until it finds
the nearest trim point. You must supply the initial point implicitly or explicitly.
If trim cannot find a trim point, it returns the point encountered in its search
where the state derivatives are closest to zero in a min-max sense; that is, it
returns the point that minimizes the maximum deviation from zero of the
derivatives. trim can find trim points that meet specific input, output, or state
conditions, and it can find points where a system is changing in a specified
manner, that is, points where the system’s state derivatives equal specific
nonzero values.

[x,u,y] = trim('sys') finds the equilibrium point nearest to the system’s
initial state, x0. Specifically, trim finds the equilibrium point that minimizes
the maximum absolute value of [x x0,u,y]. If trim cannot find an equilibrium
point near the system’s initial state, it returns the point at which the system is
nearest to equilibrium. Specifically, it returns the point that minimizes
abs(dx 0). You can obtain x0 using this command.

[sizes,x0,xstr] = sys([],[],[],0)

[x,u,y] = trim('sys',x0,u0,y0) finds the trim point nearest to x0, u0, y0,
that is, the point that minimizes the maximum value of

abs([x x0; u u0; y y0])

The command
3-6

trim

slref.book Page 7 M onday, September 27, 2004 3:20 PM
trim('sys', x0, u0, y0, ix, iu, iy)

finds the trim point closest to x0, u0, y0 that satisfies a specified set of state,
input, and/or output conditions. The integer vectors ix, iu, and iy select the
values in x0, u0, and y0 that must be satisfied. If trim cannot find an
equilibrium point that satisfies the specified set of conditions exactly, it returns
the nearest point that satisfies the conditions, namely

abs([x(ix)-x0(ix); u(iu)-u0(iu); y(iy)-y0(iy)])

Use the syntax

[x,u,y,dx] = trim('sys', x0, u0, y0, ix, iu, iy, dx0, idx)

to find specific nonequilibrium points, that is, points at which the system’s
state derivatives have some specified nonzero value. Here, dx0 specifies the
state derivative values at the search’s starting point and idx selects the values
in dx0 that the search must satisfy exactly.

The optional options argument is an array of optimization parameters that
trim passes to the optimization function that it uses to find trim points. The
optimization function, in turn, uses this array to control the optimization
process and to return information about the process. trim returns the options
array at the end of the search process. By exposing the underlying optimization
process in this way, trim allows you to monitor and fine-tune the search for
trim points.

Five of the optimization array elements are particularly useful for finding trim
points. The following table describes how each element affects the search for a
trim point.

No. Default Description

1 0 Specifies display options. 0 specifies no display; 1
specifies tabular output; -1 suppresses warning
messages.

2 0.0001 Precision the computed trim point must attain to
terminate the search.

3 0.0001 Precision the trim search goal function must attain to
terminate the search.
3-7

trim

slref.book Page 8 M onday, September 27, 2004 3:20 PM
See the Optimization Toolbox User’s Guide for a detailed description of the
options array.

Examples Consider a linear state-space model

The A, B, C, and D matrices are as follows in a system called sys.

A = [-0.09 -0.01; 1 0];
B = [0 -7; 0 -2];
C = [0 2; 1 -5];
D = [-3 0; 1 0];

Example 1 To find an equilibrium point, use

[x,u,y,dx,options] = trim('sys')

x =
0
0

u =
0

y =
0
0

dx =
0
0

4 0.0001 Precision the state derivatives must attain to terminate
the search.

10 N/A Returns the number of iterations used to find a trim
point.

No. Default Description (Continued)

x· Ax Bu+=

y Cx Du+=
3-8

trim

slref.book Page 9 M onday, September 27, 2004 3:20 PM
The number of iterations taken is

options(10)
ans =

7

Example 2 To find an equilibrium point near x = [1;1], u = [1;1], enter

x0 = [1;1];
u0 = [1;1];
[x,u,y,dx,options] = trim('sys', x0, u0);

x =
 1.0e 11 ∗
-0.1167
-0.1167

u =
 0.3333
 0.0000

y =
-1.0000
 0.3333

dx =
 1.0e 11 ∗
 0.4214
 0.0003

The number of iterations taken is

options(10)
ans =

25

Example 3 To find an equilibrium point with the outputs fixed to 1, use

y = [1;1];
iy = [1;2];
[x,u,y,dx] = trim('sys', [], [], y, [], [], iy)

x =
 0.0009
-0.3075
3-9

trim

slref.book Page 10 M onday, Septem ber 27, 2004 3:20 PM
u =
-0.5383
 0.0004

y =
 1.0000
 1.0000

dx =
 1.0e-16 ∗
-0.0173
 0.2396

Example 4 To find an equilibrium point with the outputs fixed to 1 and the derivatives set
to 0 and 1, use

y = [1;1];
iy = [1;2];
dx = [0;1];
idx = [1;2];
[x,u,y,dx,options] = trim('sys',[],[],y,[],[],iy,dx,idx)

x =
 0.9752
-0.0827

u =
-0.3884
-0.0124

y =
 1.0000
 1.0000

dx =
 0.0000
 1.0000

The number of iterations taken is

options(10)
ans =

13
3-10

trim

slref.book Page 11 M onday, Septem ber 27, 2004 3:20 PM
Limitations The trim point found by trim starting from any given initial point is only a local
value. Other, more suitable trim points may exist. Thus, if you want to find the
most suitable trim point for a particular application, it is important to try a
number of initial guesses for x, u, and y.

Algorithm trim uses a sequential quadratic programming algorithm to find trim points.
See the documentation for the Optimization Toolbox for a description of this
algorithm.
3-11

trim

slref.book Page 12 M onday, Septem ber 27, 2004 3:20 PM
3-12

slref.book Page 1 M onday, September 27, 2004 3:20 PM
4

Model Construction
Commands

The following sections describe commands that you can use in programs that create or modify models.

Task-Oriented List of Commands
(p. 4-2)

List of commands arranged by tasks to be performed

Specifying Parameters and Object
Paths (p. 4-4)

How to specify parameters and object paths required by
model construction commands

4 Model Construction Commands

4-2

slref.book Page 2 M onday, September 27, 2004 3:20 PM
Task-Oriented List of Commands
This table indicates the tasks performed by the commands described in this
chapter. The reference section of this chapter lists the commands in
alphabetical order.

Task Command

Create a new Simulink system. new_system

Open an existing system. open_system

Close a system window. close_system, bdclose

Save a system. save_system

Find a system, block, line, or annotation. find_system

Add a new block to a system. add_block

Delete a block from a system. delete_block

Replace a block in a system. replace_block

Update obsolete versions of blocks slupdate

Terminate unconnected ports in a system. addterms

Add a line to a system. add_line

Delete a line from a system. delete_line

Add a parameter to a system. add_param

Get a parameter value. get_param

Set parameter values. set_param

Delete a system parameter. delete_param

Get the pathname of the current block. gcb

Get the pathname of the current system. gcs

Get the handle of the current block. gcbh

slref.book Page 3 M onday, September 27, 2004 3:20 PM
Get the name of the root-level system. bdroot

Open the Simulink block library. simulink

Discretize a model. sldiscmdl

Open the Model Discretizer GUI. slmdldiscui

Compare two models. compare_model

Task Command
4-3

4 Model Construction Commands

4-4

slref.book Page 4 M onday, September 27, 2004 3:20 PM
Specifying Parameters and Object Paths
This section explains how to specify parameters and object paths required by
model construction commands.

How to Specify Parameters for the Commands
The commands described in this chapter require that you specify arguments
that describe a system, block, or block parameter. Appendix , “Model and Block
Parameters,” provides comprehensive tables of model and block parameters.

How to Specify a Path for a Simulink Object
Many of the commands described in this chapter require that you identify a
Simulink system or block. Identify systems and blocks by specifying their
paths:

• To identify a system, specify its name, which is the name of the file that
contains the system description, without the mdl extension.
system

• To identify a subsystem, specify the system and the hierarchy of subsystems
in which the subsystem resides.
system/subsystem1/.../subsystem

• To identify a block, specify the path of the system that contains the block and
specify the block name.
system/subsystem1/.../subsystem/block

If the block name includes a newline or carriage return, specify the block name
as a string vector and use sprintf('\n') as the newline character. For
example, these lines assign the newline character to cr, then get the value for
the Signal Generator block’s Amplitude parameter.

cr = sprintf('\n');
get_param(['untitled/Signal',cr,'Generator'],'Amplitude')
ans =

1

slref.book Page 5 M onday, September 27, 2004 3:20 PM
If the block name includes a slash character (/), you repeat the slash when you
specify the block name. For example, to get the value of the Location
parameter for the block named Signal/Noise in the mymodel system, enter

get_param('mymodel/Signal//Noise','Location')
4-5

add_block

4

slref.book Page 6 M onday, September 27, 2004 3:20 PM
-6

4add_block

4

Purpose Add a block to a Simulink system

Syntax add_block('src', 'dest')
add_block('src', 'dest', 'parameter1', value1, ...)

Description add_block('src', 'dest') copies the block with the full pathname 'src' to
a new block with the full path name 'dest'. The block parameters of the new
block are identical to those of the original. The name 'built in' can be used
as a source system name for all Simulink built-in blocks (blocks available in
Simulink block libraries that are not masked blocks).

add_block('src', 'dest_obj', 'parameter1', value1, ...) creates a copy
as above, in which the named parameters have the specified values. Any
additional arguments must occur in parameter/value pairs.

Examples This command copies the Scope block from the Sinks subsystem of the
simulink system to a block named Scope1 in the timing subsystem of the
engine system.

add_block('simulink/Sinks/Scope', 'engine/timing/Scope1')

This command creates a new subsystem named controller in the F14 system.

add_block('built-in/SubSystem', 'F14/controller')

This command copies the built-in Gain block to a block named Volume in the
mymodel system and assigns the Gain parameter a value of 4.

add_block('built-in/Gain', 'mymodel/Volume', 'Gain', '4')

See Also delete_block, set_param

add_line

slref.book Page 7 M onday, September 27, 2004 3:20 PM
4add_linePurpose Add a line to a Simulink system

Syntax h = add_line('sys','oport','iport')
h = add_line('sys','oport','iport', 'autorouting','on')
h = add_line('sys', points)

Description The add_line command adds a line to the specified system and returns a
handle to the new line. You can define the line in two ways:

• By naming the block ports that are to be connected by the line

• By specifying the location of the points that define the line segments

add_line('sys', 'oport', 'iport') adds a straight line to a system from the
specified block output port 'oport' to the specified block input port 'iport'.
'oport' and 'iport' are strings consisting of a block name and a port
identifier in the form 'block/port'. Most block ports are identified by
numbering the ports from top to bottom or from left to right, such as 'Gain/1'
or 'Sum/2'. Enable, Trigger, State, and Action ports are identified by name,
such as 'subsystem_name/Enable', 'subsystem_name/Trigger',
'Integrator/State', or if_action_subsystem_name/Ifaction'.

add_line('sys','oport','iport', 'autorouting','on') works like
add_line('sys','oport','iport') except that it routes the line around
intervening blocks. The default value for autorouting is 'off'.

add_line(system, points) adds a segmented line to a system. Each row of the
points array specifies the x and y coordinates of a point on a line segment. The
origin is the top left corner of the window. The signal flows from the point
defined in the first row to the point defined in the last row. If the start of the
new line is close to the output of an existing block or line, a connection is made.
Likewise, if the end of the line is close to an existing input, a connection is
made.
4-7

add_line

slref.book Page 8 M onday, September 27, 2004 3:20 PM
Examples This command adds a line to the mymodel system connecting the output of the
Sine Wave block to the first input of the Mux block.

add_line('mymodel','Sine Wave/1','Mux/1')

This command adds a line to the mymodel system extending from (20,55) to
(40,10) to (60,60).

add_line('mymodel',[20 55; 40 10; 60 60])

See Also delete_line
4-8

add_param

slref.book Page 9 M onday, September 27, 2004 3:20 PM
4add_paramPurpose Add a parameter to a Simulink system

Syntax add_param('sys','parameter1',value1,'parameter2',value2,...)

Description The add_param command adds the specified parameters to the specified system
and initializes the parameters to the specified values. Case is ignored for
parameter names. Value strings are case sensitive. The value of the parameter
must be a string. Once the parameter is added to a system, set_param and
get_param can be used on the new parameters as if they were standard
Simulink parameters.

Examples This command

add_param('vdp','Param1','Value1','Param2','Value2')

adds the parameters Param1 and Param2 with values 'Value1' and 'Value2'
to the vdp system.

See Also delete_param, get_param, set_param
4-9

addterms

slref.book Page 10 M onday, Septem ber 27, 2004 3:20 PM
4addtermsPurpose Add terminators to unconnected ports in a model

Syntax addterms('sys')

Description addterms('sys') adds Terminator and Ground blocks to the unconnected
ports in the Simulink block diagram sys.

See Also slupdate
4-10

bdclose

slref.book Page 11 M onday, Septem ber 27, 2004 3:20 PM
4bdclose

4
Purpose Close any or all Simulink system windows unconditionally

Syntax bdclose
bdclose('sys')
bdclose('all')

Description bdclose with no arguments closes the current system window unconditionally
and without confirmation. Any changes made to the system since it was last
saved are lost.

bdclose('sys') closes the specified system window.

bdclose('all') closes all system windows.

Examples This command closes the vdp system.

bdclose('vdp')

See Also close_system, new_system, open_system, save_system
4-11

bdroot

slref.book Page 12 M onday, Septem ber 27, 2004 3:20 PM
4bdrootPurpose Return the name of the top-level Simulink system

Syntax bdroot
bdroot('obj')

Description bdroot with no arguments returns the top-level system name.

bdroot('obj', where 'obj' is a system or block pathname, returns the name
of the top-level system containing the specified object name.

Examples This command returns the name of the top-level system that contains the
current block.

bdroot(gcb)

See Also find_system, gcb
4-12

close_system

slref.book Page 13 M onday, Septem ber 27, 2004 3:20 PM
4close_systemPurpose Close a Simulink system window or a block dialog box

Syntax close_system
close_system('sys')
close_system('sys', saveflag)
close_system('sys', 'newname')
close_system('blk')

Description close_system with no arguments closes the current system or subsystem
window. If the current system is the top-level system and it has been modified,
close_system asks if the changed system should be saved to a file before
removing the system from memory. The current system is defined in the
description of the gcs command.

close_system('sys') closes the specified system or subsystem window.

close_system('sys', saveflag) closes the specified top-level system window
and removes it from memory:

• If saveflag is 0, the system is not saved.

• If saveflag is 1, the system is saved with its current name.

close_system('sys', 'newname') saves the specified top-level system to a file
with the specified new name, then closes the system.

close_system('blk'), where 'blk' is a full block pathname, closes the dialog
box associated with the specified block or calls the block’s CloseFcn callback
parameter if one is defined. Any additional arguments are ignored.

Examples This command closes the current system.

close_system

This command closes the vdp system.

close_system('vdp')

This command saves the engine system with its current name, then closes it.

close_system('engine', 1)
4-13

close_system

slref.book Page 14 M onday, Septem ber 27, 2004 3:20 PM
This command saves the mymdl12 system under the new name testsys, then
closes it.

close_system('mymdl12', 'testsys')

This command closes the dialog box of the Unit Delay block in the Combustion
subsystem of the engine system.

close_system('engine/Combustion/Unit Delay')

See Also bdclose, gcs, new_system, open_system, save_system
4-14

compare_model

slref.book Page 15 M onday, Septem ber 27, 2004 3:20 PM
4compare_modelPurpose Compare two models

Syntax compare_model('model1', 'model2', 0)
compare_model('model1', 'model2', 1)

Description compare_model('model1', 'model2', 0) compares model1 and model2 and
returns a cell array that details the differences between the two models.
compare_model('model1', 'model2', 1) returns only the nongraphical
differences between the models.

 The cell array returned by this function contains a cell array for each item
compared between the two models. Each item cell array contains the following
cells:

Cell Contents

1 Name of compared item in first model

2 Name of compared item in second model

3 Type of the compared item (e.g., block, subsystem, state, etc.)

4 Comparison result: d if the two items differ, s if they’re the same, u
if the item is unique

5 Handle of the parent of the first item

6 Handle of the first item

7 Handle of the parent of the second item

8 Handle of the second item
4-15

delete_block

slref.book Page 16 M onday, Septem ber 27, 2004 3:20 PM
4delete_blockPurpose Delete a block from a Simulink system

Syntax delete_block('blk')

Description delete_block('blk'), where 'blk' is a full block pathname, deletes the
specified block from a system.

Example This command removes the Out1 block from the vdp system.

delete_block('vdp/Out1')

See Also add_block
4-16

delete_line

slref.book Page 17 M onday, Septem ber 27, 2004 3:20 PM
4delete_linePurpose Delete a line from a Simulink system

Syntax delete_line('sys', 'oport', 'iport')

Description delete_line('sys', 'oport', 'iport') deletes the line extending from the
specified block output port 'oport' to the specified block input port 'iport'.
'oport' and 'iport' are strings consisting of a block name and a port
identifier in the form 'block/port'. Most block ports are identified by
numbering the ports from top to bottom or from left to right, such as 'Gain/1'
or 'Sum/2'. Enable, Trigger, and State ports are identified by name, such as
'subsystem_name/Enable', 'subsystem_name/Trigger', 'Integrator/
State', or if_action_subsystem_name/Ifaction'.

delete_line('sys', [x y]) deletes one of the lines in the system that
contains the specified point (x,y), if any such line exists.

Example This command removes the line from the mymodel system connecting the Sum
block to the second input of the Mux block.

delete_line('mymodel','Sum/1','Mux/2')

See Also add_line
4-17

delete_param

slref.book Page 18 M onday, Septem ber 27, 2004 3:20 PM
4delete_paramPurpose Delete a system parameter added via the add_param command

Syntax delete_param('sys','parameter1','parameter2',...)

Description This command deletes parameters that were added to the system using the
add_param command. The command displays an error message if a specified
parameter was not added with the add_param command.

Examples The following example

delete_param('vdp','Param1')
add_param('vdp','Param1','Value1','Param2','Value2')

adds the parameters Param1 and Param2 to the vdp system, then deletes Param1
from the system.

See Also add_param
4-18

find_system

slref.book Page 19 M onday, Septem ber 27, 2004 3:20 PM
4find_systemPurpose Find systems, blocks, lines, ports, and annotations

Syntax find_system(sys, 'c1', cv1, 'c2', cv2,...'p1', v1, 'p2', v2,...)

Description find_system(sys, 'c1', cv1, 'c2', cv2,...'p1', v1, 'p2', v2,...)
searches the systems or subsystems specified by sys, using the constraints
specified by c1, c2, etc., and returns handles or paths to the objects having the
specified parameter values v1, v2, etc. sys can be a pathname (or cell array of
pathnames), a handle (or vector of handles), or omitted. If sys is a pathname
or cell array of pathnames, find_system returns a cell array of pathnames of
the objects it finds. If sys is a handle or a vector of handles, find_system
returns a vector of handles to the objects that it finds. If sys is omitted,
find_system searches all open systems and returns a cell array of pathnames.

Case is ignored for parameter names. Value strings are case sensitive by
default (see the 'CaseSensitive' search constraint for more information). Any
parameters that correspond to dialog box entries have string values. See
Appendix , “Model and Block Parameters,” for a list of model and block
parameters.

You can specify any of the following search constraints.

Name Value Type Description

'SearchDepth' scalar Restricts the search depth to the
specified level (0 for open systems
only, 1 for blocks and subsystems
of the top-level system, 2 for the
top-level system and its children,
etc.). The default is all levels.

'LookUnderMasks' 'none' Search skips masked blocks.

{'graphical'} Search includes masked blocks
that have no workspaces and no
dialogs. This is the default.

'functional' Search includes masked blocks
that do not have dialogs.
4-19

find_system

slref.book Page 20 M onday, Septem ber 27, 2004 3:20 PM
The table encloses default constraint values in brackets. If a 'constraint' is
omitted, find_system uses the default constraint value.

Examples This command returns a cell array containing the names of all open systems
and blocks.

find_system

This command returns the names of all open block diagrams.

open_bd = find_system('type', 'block_diagram')

This command returns the names of all Goto blocks that are children of the
Unlocked subsystem in the clutch system.

find_system('clutch/
Unlocked','SearchDepth',1,'BlockType','Goto')

'all' Search includes all masked
blocks.

'FollowLinks' 'on'| {'off'} If 'on', search follows links into
library blocks. The default is
'off'.

'FindAll' 'on'| {'off'} If 'on', search extends to lines,
ports, and annotations within
systems. The default is 'off'.
Note that find_system returns a
vector of handles when this option
is 'on', regardless of the array
type of sys.

'CaseSensitive' {'on'}| 'off' If 'on', search considers case
when matching search strings.
The default is 'on'.

'RegExp' 'on'| {'off'} If 'on', search treats search
expressions as regular
expressions. The default is 'off'.

Name Value Type Description
4-20

find_system

slref.book Page 21 M onday, Septem ber 27, 2004 3:20 PM
These commands return the names of all Gain blocks in the vdp system having
a Gain parameter value of 1.

gb = find_system('vdp', 'BlockType', 'Gain')
find_system(gb, 'Gain', '1')

The preceding commands are equivalent to this command:

find_system('vdp', 'BlockType', 'Gain', 'Gain', '1')

These commands obtain the handles of all lines and annotations in the vdp
system.

sys = get_param('vdp', 'Handle');
l = find_system(sys, 'FindAll', 'on', 'type', 'line');
a = find_system(sys, 'FindAll', 'on', 'type', 'annotation');

Searching with
Regular
Expressions

If you specify the 'RegExp'constraint as 'on', find_system treats search value
strings as regular expressions. A regular expression is a string of characters in
which some characters have special pattern-matching significance. For
example, a period (.) in a regular expression matches not only itself but any
other character.

Regular expressions greatly expand the types of searches you can perform with
find_system. For example, regular expressions allow you to do partial word
searches. You can search for all objects that have a specified parameter that
contains or begins or ends with a specified string of characters.

To use regular expressions effectively, you need to learn the meanings of the
special characters that regular expressions can contain. The following table
lists the special characters supported by find_subystem and explains their
usage.
4-21

find_system

slref.book Page 22 M onday, Septem ber 27, 2004 3:20 PM
Expression Usage

. Matches any character. For example, the string 'a.'
matches 'aa', 'ab', 'ac', etc.

* Matches zero or more of preceding character. For example,
'ab*' matches 'a', 'ab', 'abb', etc. The expression '.*'
matches any string, including the empty string.

+ Matches one or more of preceding character. For example,
'ab+' matches 'ab', 'abb', etc.

^ Matches start of string. For example, '^a.*' matches any
string that starts with 'a'.

$ Matches end of string. For example, '.*a$' matches any
string that ends with 'a'.

\ Causes the next character to be treated as an ordinary
character. This escape character lets regular expressions
match expressions that contain special characters. For
example, the search string '\\' matches any string
containing a \ character.

[] Matches any one of a specified set of characters. For
example, 'f[oa]r' matches 'for' and 'far'. Some
characters have special meaning within brackets. A hyphen
(-) indicates a range of characters to match. For example,
'[a-zA-Z1-9]' matches any alphanumeric character. A
circumflex (^) indicates characters that should not produce
a match. For example, 'f[^i]r' matches 'far' and 'for'
but not 'fir'.

\w Matches a word character. (This is a shorthand expression
for [a-z_A-Z0-9].) For example, '^\w' matches 'mu' but
not '&mu'.

\d Matches any digit (shorthand for [0-9]). For example,
'\d+' matches any integer.
4-22

find_system

slref.book Page 23 M onday, Septem ber 27, 2004 3:20 PM
To use regular expressions to search Simulink systems, specify the 'regexp'
search constraint as 'on' in a find_system command and use a regular
expression anywhere you would use an ordinary search value string.

For example, the following command finds all the inport and outport blocks in
the clutch model demo provided with Simulink.

find_system('clutch', 'regexp', 'on', 'blocktype', 'port')

See Also get_param, set_param

\D Matches any nondigit (shorthand for [^0-9]).

\s Matches a white space (shorthand for [\t\r\n\f]).

\S Matches a non-white-space (shorthand for [^ \t\r\n\f]).

\<WORD\> Matches WORD exactly, where WORD is a string of characters
separated by white space from other words. For example,
'\<to\>' matches 'to' but not 'today'.

Expression Usage
4-23

gcb

slref.book Page 24 M onday, Septem ber 27, 2004 3:20 PM
4gcbPurpose Get the pathname of the current block

Syntax gcb
gcb('sys')

Description gcb returns the full block path name of the current block in the current system.

gcb('sys') returns the full block path name of the current block in the
specified system.

The current block is one of these:

• During editing, the current block is the block most recently clicked on.

• During simulation of a system that contains S-Function blocks, the current
block is the S-Function block currently executing its corresponding MATLAB
function.

• During callbacks, the current block is the block whose callback routine is
being executed.

• During evaluation of the MaskInitialization string, the current block is
the block whose mask is being evaluated.

Examples This command returns the path of the most recently selected block.

gcb
ans =

clutch/Locked/Inertia

This command gets the value of the Gain parameter of the current block.

get_param(gcb,'Gain')
ans =

1/(Iv+Ie)

See Also gcbh, gcs
4-24

gcbh

slref.book Page 25 M onday, Septem ber 27, 2004 3:20 PM
4gcbhPurpose Get the handle of the current block

Syntax gcbh

Description gcbh returns the handle of the current block in the current system.

You can use this command to identify or address blocks that have no parent
system. The command should be most useful to blockset authors.

Examples This command returns the handle of the most recently selected block.

gcbh

ans =

281.0001

See Also gcb
4-25

gcs

slref.book Page 26 M onday, Septem ber 27, 2004 3:20 PM
4gcsPurpose Get the pathname of the current system

Syntax gcs

Description gcs returns the full pathname of the current system.

The current system is one of these:

• During editing, the current system is the system or subsystem most recently
clicked in.

• During simulation of a system that contains S-Function blocks, the current
system is the system or subsystem containing the S-Function block that is
currently being evaluated.

• During callbacks, the current system is the system containing any block
whose callback routine is being executed.

• During evaluation of the MaskInitialization string, the current system is
the system containing the block whose mask is being evaluated.

The current system is always the current model or a subsystem of the current
model. Use bdroot to get the current model.

Examples This example returns the path of the system that contains the most recently
selected block.

gcs
ans =

clutch/Locked

See Also gcb, bdroot
4-26

get_param

slref.book Page 27 M onday, Septem ber 27, 2004 3:20 PM
4get_paramPurpose Get system and block parameter values

Syntax get_param('obj', 'parameter')
get_param({ objects }, 'parameter')
get_param(handle, 'parameter')
get_param(0, 'parameter')
get_param('obj', 'ObjectParameters')
get_param('obj', 'DialogParameters')

Description get_param('obj', 'parameter'), where 'obj' is a system or block path
name, returns the value of the specified parameter. Case is ignored for
parameter names.

get_param({ objects }, 'parameter') accepts a cell array of full path
specifiers, enabling you to get the values of a parameter common to all objects
specified in the cell array.

get_param(handle, 'parameter') returns the specified parameter of the
object whose handle is handle.

get_param(0, 'parameter') returns the current value of a Simulink session
parameter or the default value of a model or block parameter.

get_param('obj', 'ObjectParameters') returns a structure that describes
obj’s parameters. Each field of the returned structure corresponds to a
particular parameter and has the parameter’s name. For example, the Name
field corresponds to the object’s Name parameter. Each parameter field itself
contains three fields, Name, Type, and Attributes, that specify the parameter’s
name (for example, “Gain”), data type (for example, string), and attributes (for
example, read-only), respectively.

get_param('obj', 'DialogParameters') returns a cell array containing the
names of the dialog parameters of the specified block.

Appendix , “Model and Block Parameters,” contains lists of model and block
parameters.

Examples This command returns the value of the Gain parameter for the Inertia block in
the Requisite Friction subsystem of the clutch system.

get_param('clutch/Requisite Friction/Inertia','Gain')
4-27

get_param

slref.book Page 28 M onday, Septem ber 27, 2004 3:20 PM
ans =
1/(Iv+Ie)

These commands display the block types of all blocks in the mx + b system (the
current system), described in “Masked Subsystem Example” in Using
Simulink.

blks = find_system(gcs, 'Type', 'block');
listblks = get_param(blks, 'BlockType')

listblks =

'SubSystem'
'Inport'
'Constant'
'Gain'
'Sum'
'Outport'

This command returns the name of the currently selected block.

get_param(gcb, 'Name')

The following commands get the attributes of the currently selected block’s
Name parameter.

p = get_param(gcb, 'ObjectParameters');
a = p.Name.Attributes

ans =
 'read-write' 'always-save'

The following command gets the dialog parameters of a Sine Wave block.

p = get_param('untitled/Sine Wave', 'DialogParameters')
p =
 'Amplitude'
 'Frequency'
 'Phase'
 'SampleTime'

See Also find_system, set_param
4-28

new_system

slref.book Page 29 M onday, Septem ber 27, 2004 3:20 PM
4new_systemPurpose Create an empty Simulink system

Syntax new_system('sys')
new_system('sys', 'Model')
new_system('sys', 'Model', 'subsystem_path')
new_system('sys', 'Library')

Description new_system('sys') or new_system('sys', 'Model') creates an empty
system where sys is the name of the new system.

new_system('sys', 'Model', 'subsystem_path') creates a new system from a
subsystem where subsystem_path is the full path of the subsystem. The model
that contains the subsystem must be open when this command is executed.

new_system('sys', 'Library') creates an empty library.

Note The new_system command does not open the window of the system or
library that it creates.

See Appendix , “Model and Block Parameters,” for a list of the default
parameter values for the new system.

Example This command creates a new system named 'mysys'.

new_system('mysys')

The commands

load_system('f14')
new_system('mycontroller','Model','f14/Controller')

creates a new model named mycontroller that has the same contents as does
the subsystem named Controller in the f14 demo model.

See Also close_system, open_system, save_system
4-29

open_system

slref.book Page 30 M onday, Septem ber 27, 2004 3:20 PM
4open_systemPurpose Open a Simulink system window or a block dialog box

Syntax open_system('sys')
open_system('blk')
open_system('blk', 'force')

Description open_system('sys') opens the specified system or subsystem window, where
'sys' is the name of a model on the MATLAB path, the fully qualified
pathname of a model, or the relative pathname of a subsystem of an already
open system (for example, engine/Combustion). On UNIX, the fully qualified
pathname of a model can start with a tilde (~), signifying your home directory.

open_system('blk'), where 'blk' is a full block pathname, opens the dialog
box associated with the specified block. If the block’s OpenFcn callback
parameter is defined, the routine is evaluated.

open_system('blk', 'force'), where 'blk' is a full pathname or a masked
system, looks under the mask of the specified system. This command is
equivalent to using the Look Under Mask menu item.

Example This command opens the controller system in its default screen location.

open_system('controller')

This command opens the block dialog box for the Gain block in the controller
system.

open_system('controller/Gain')

See Also close_system, new_system, save_system
4-30

replace_block

slref.book Page 31 M onday, Septem ber 27, 2004 3:20 PM
4replace_blockPurpose Replace blocks in a Simulink model

Syntax replace_block('sys', 'blk1', 'blk2', 'noprompt')
replace_block('sys', 'Parameter', 'value', 'blk', ...)

Description replace_block('sys', 'blk1', 'blk2') replaces all blocks in 'sys' having
the block or mask type 'blk1' with 'blk2'. If 'blk2' is a Simulink built-in
block, only the block name is necessary. If 'blk' is in another system, its full
block pathname is required. If 'noprompt' is omitted, Simulink displays a
dialog box that asks you to select matching blocks before making the
replacement. Specifying the 'noprompt' argument suppresses the dialog box
from being displayed. If a return variable is specified, the paths of the replaced
blocks are stored in that variable.

replace_block('sys', 'Parameter', 'value', ..., 'blk') replaces all
blocks in 'sys' having the specified values for the specified parameters with
'blk'. You can specify any number of parameter name/value pairs.

Note Because it may be difficult to undo the changes this command makes, it
is a good idea to save your system first.

Example This command replaces all Gain blocks in the f14 system with Integrator
blocks and stores the paths of the replaced blocks in RepNames. Simulink lists
the matching blocks in a dialog box before making the replacement.

RepNames = replace_block('f14','Gain','Integrator')

This command replaces all blocks in the Unlocked subsystem in the clutch
system having a Gain of 'bv' with the Integrator block. Simulink displays a
dialog box listing the matching blocks before making the replacement.

replace_block('clutch/Unlocked','Gain','bv','Integrator')

This command replaces the Gain blocks in the f14 system with Integrator
blocks but does not display the dialog box.

replace_block('f14','Gain','Integrator','noprompt')
4-31

replace_block

slref.book Page 32 M onday, Septem ber 27, 2004 3:20 PM
See Also find_system, set_param
4-32

save_system

slref.book Page 33 M onday, Septem ber 27, 2004 3:20 PM
4save_systemPurpose Save a Simulink system

Syntax save_system
save_system('sys')
save_system('sys', 'newname')
save_system('sys', 'newname', 'BreakLinks')

Description save_system saves the current top-level system to a file with its current name.

save_system('sys') saves the specified top-level system to a file with its
current name. The system must be open.

save_system('sys', 'newname') saves the specified top-level system to a file
with the specified new name. The new name can be a file name, in which case
Simulink saves the system in the working directory, or a fully qualified
pathname. On UNIX, the fully qualified pathname can start with a tilde (~),
signifying your home directory. The system to be saved must be open.

save_system('sys', 'newname', 'BreakLinks') saves the specified top-level
system to a file with the specified new name, replacing links to library blocks
with copies of the library blocks in the saved file.

Example This command saves the current system.

save_system

This command saves the vdp system.

save_system('vdp')

This command saves the vdp system to a file with the name 'myvdp'.

save_system('vdp', 'myvdp')

See Also close_system, new_system, open_system
4-33

set_param

slref.book Page 34 M onday, Septem ber 27, 2004 3:20 PM
4set_paramPurpose Set Simulink system and block parameters

Syntax set_param('obj', 'parameter1', value1, 'parameter2', value2, ...)

Description set_param('obj', 'parameter1', value1, 'parameter2', value2, ...),
where 'obj' is a system or block path or 0, sets the specified parameters to the
specified values. Use 0 to set the default value of a parameter or the values of
session parameters. Case is ignored for parameter names. Value strings are
case sensitive. Any parameters that correspond to dialog box entries have
string values. Model and block parameters are listed in Appendix , “Model and
Block Parameters.”

You can change block parameter values in the workspace during a simulation
and update the block diagram with these changes. To do this, make the
changes in the command window, then make the model window the active
window, then choose Update Diagram from the Edit menu.

Note Most block parameter values must be specified as strings. Two
exceptions are the Position and UserData parameters, common to all blocks.

Examples This command sets the Solver and StopTime parameters of the vdp system.

set_param('vdp', 'Solver', 'ode15s', 'StopTime', '3000')

This command sets the Gain parameter of block Mu in the vdp system to 1000
(stiff).

set_param('vdp/Mu', 'Gain', '1000')

This command sets the position of the Fcn block in the vdp system.

set_param('vdp/Fcn', 'Position', [50 100 110 120])

This command sets the Zeros and Poles parameters for the Zero-Pole block in
the mymodel system.

set_param('mymodel/Zero-Pole','Zeros','[2 4]','Poles','[1 2 3]')
4-34

set_param

slref.book Page 35 M onday, Septem ber 27, 2004 3:20 PM
This command sets the Gain parameter for a block in a masked subsystem. The
variable k is associated with the Gain parameter.

set_param('mymodel/Subsystem', 'k', '10')

This command sets the OpenFcn callback parameter of the block named
Compute in system mymodel. The function 'my_open_fcn' executes when the
user double-clicks on the Compute block (see “Using Callback Routines”).

set_param('mymodel/Compute', 'OpenFcn', 'my_open_fcn')

See Also get_param, find_system
4-35

simulink

slref.book Page 36 M onday, Septem ber 27, 2004 3:20 PM
4simulinkPurpose Open the Simulink block library

Syntax simulink

Description On Microsoft Windows, the simulink command opens (or activates) the
Simulink block library browser. On UNIX, the command opens the Simulink
library window.
4-36

sldiscmdl

slref.book Page 37 M onday, Septem ber 27, 2004 3:20 PM
4sldiscmdlPurpose Discretize a Simulink model containing continuous blocks

Syntax sldiscmdl('sys',sampletime)
sldiscmdl('sys',sampletime,'method')
sldiscmdl('sys',sampletime,{options})
sldiscmdl('sys',sampletime,'method',cf)
sldiscmdl('sys',sampletime,'method',{options})
sldiscmdl('sys',sampletime,'method',cf,{options})

Description sldiscmdl('sys',sampletime) discretizes the model specified by 'sys' and
sampletime. You can enter a sample time and an offset as a 2-element vector
for sampletime. The units for sampletime are seconds.

sldiscmdl('sys',sampletime,'method') discretizes the model with the
transform method specified by 'method'. Available values for 'method' are
shown below:

sldiscmdl('sys',sampletime,{options}) discretizes the model with the
criteria specified by {options}, where {options} is a cell array containing the
following string elements:

{'target','ReplaceWith','PutInto','prompt'}

Value Description

'zoh' Zero-order hold on the inputs

'foh' First-order hold on the inputs

'tustin' Bilinear (Tustin) approximation

'prewarp' Tustin approximation with
frequency prewarping

'matched' Matched pole-zero method (for
SISO systems only)
4-37

sldiscmdl

slref.book Page 38 M onday, Septem ber 27, 2004 3:20 PM
Available values for 'target' are shown below:

Available values for 'ReplaceWith' are shown below:

Available values for 'PutInto' are shown below:

Value Description

'all' Discretize all continuous blocks

'selected' Discretize selected blocks only

'<full path name of block>' Discretize specified block

Value Description

'parammask' Create discrete blocks whose
parameters are retained from the
corresponding continuous block

'hardcoded' Create discrete blocks whose
parameters are “hard_coded”
values placed directly into the
block’s dialog

Value Description

'current' Apply discretization to current
model

'configurable' Create discretization candidate in
a configurable subsystem

'untitled' Create discretization in a new
untitled window

'copy' Create discretization in copy of the
original model
4-38

sldiscmdl

slref.book Page 39 M onday, Septem ber 27, 2004 3:20 PM
Available values for 'prompt' are shown below:

sldiscmdl('sys',sampletime,'method',cf) discretizes the model with the
critical frequency specified by cf. The units for cf are Hz. This is only used
when the transform method is 'prewarp'.

Examples This command discretizes all of the continuous blocks in the f14 model with a
1 second sample time.

sldiscmdl('f14',1.0)

This command discretizes the Controller subsystem in the f14 model using a
first-order hold transform method with a 1 second sample time and a 0.1 second
sample time offset. The discretized block has “hard-coded” parameters that are
placed directly into the block’s dialog box.

sldiscmdl('f14',[1.0 0.1],'foh',{'f14/Controller',...
'hardcoded','copy','on'})

This command discretizes the Controller subsystem in the f14 model using a
zero-order hold transform method with a 1 second sample time and a 0.1 second
sample time offset. It returns to the command window a cell array for the
original continuous blocks in the system and a cell array for the discretized
blocks in the system.

[a, b] = sldiscmdl('f14',[1.0 0.1],'zoh', {'f14/Controller',...
'hardcoded', 'copy', 'on'})
a =

 [1x43 char] [1x37 char] [1x53 char] [1x30 char]

b =

Value Description

'on' Show the discretization
information

'off' Do not show the discretization
information
4-39

sldiscmdl

slref.book Page 40 M onday, Septem ber 27, 2004 3:20 PM
 [1x43 char] [1x37 char] [1x53 char] [1x30 char]

You can index into the cell arrays to get the new names of the discretized blocks
and the original names of the continuous blocks.

For example, this command returns the name of the second discretized block.

b{2}

ans =

f14_disc_copy/Controller/Pitch Rate
Lead Filter
4-40

slmdldiscui

slref.book Page 41 M onday, Septem ber 27, 2004 3:20 PM
4slmdldiscuiPurpose Open the Model Discretizer GUI

Syntax slmdldiscui('name')

Description slmdldiscui('name') Opens the Model Discretizer with the library or model
specified by 'name'.

Examples This command opens the Model Discretizer with the f14 model.

slmdldiscui('f14')

This command opens the Model Discretizer with the library named Test.

slmdldiscui('Test')
4-41

slupdate

slref.book Page 42 M onday, Septem ber 27, 2004 3:20 PM
4slupdatePurpose Replace obsolete versions of blocks in a model with the latest versions

Syntax slupdate('sys')
slupdate('sys', prompt)

Description slupdate('sys') replaces versions of blocks in the model sys made obsolete
by Simulink 5 with the latest versions. slupdate('sys', prompt)specifies
whether to prompt you before replacing a block. If prompt equals 1, the
command prompts you before replacing the block. The prompt asks whether
you want to replace the block. Valid responses are:

• y

Replace the block (the default)
• n

Do not replace the block
• a

Replace this and all subsequent obsolete blocks without further prompting

If prompt equals 0, the command replaces all obsolete blocks without
prompting you.

Note The model to be updated must have been created by a version of
Simulink earlier than Simulink 5 and must be open when you call slupdate.

Blocks updated by this command include:

Block Comments

Pulse Generator New implementation

Hit Crossing S-function replaced by built-in implementation

Memory S-function replaced by built-in implementation

Quantizer S-function replaced by built-in implementation

Graph scope Replaced by much-improved built-in Scope
4-42

slupdate

slref.book Page 43 M onday, Septem ber 27, 2004 3:20 PM
In addition to replacing obsolete blocks, slupdate

• Adds terminator blocks to any unconnected input and output ports, i.e.,
Ground and Terminator blocks, respectively

• Converts blocks to links in the appropriate block libraries

• Replaces any masked builtin block that is not a subsystem or s-functions
with a masked subsystems containing the builtin block

2-D Table Lookup S-function replaced by built-in implementation

Elementary Math Replaced by either the Trigonometry, Rounding, or
Math block

To Workspace Three-element version of Maximum rows
parameter is separated into individual fields

Outport Replace initial output of width []

Block Comments
4-43

slupdate

slref.book Page 44 M onday, Septem ber 27, 2004 3:20 PM
4-44

slref.book Page 1 M onday, September 27, 2004 3:20 PM
5

Simulation Commands

The following section describes commands that you can use to run simulations manually.

5 Simulation Commands

5-2

slref.book Page 2 M onday, September 27, 2004 3:20 PM
Task-Oriented List of Commands
This table indicates the tasks performed by the commands described in this
chapter. The reference section of this chapter lists the commands in
alphabetical order.

Task Command

Create a new Simulink system. new_system

Open an existing system. open_system

Close a system window. close_system, bdclose

Save a system. save_system

Find a system, block, line, or annotation. find_system

Add a new block to a system. add_block

Delete a block from a system. delete_block

Replace a block in a system. replace_block

Add a line to a system. add_line

Delete a line from a system. delete_line

Add a parameter to a system. add_param

Get a parameter value. get_param

Set parameter values. set_param

Delete a system parameter. delete_param

Get the pathname of the current block. gcb

Get the pathname of the current system. gcs

Get the handle of the current block. gcbh

Get the name of the root-level system. bdroot

Open the Simulink block library. simulink

slref.book Page 3 M onday, September 27, 2004 3:20 PM
Specifying Parameters and Object Paths
This section explains how to specify parameters and object paths required by
model construction commands.

How to Specify Parameters for the Commands
The commands described in this chapter require that you specify arguments
that describe a system, block, or block parameter. Appendix , “Model and Block
Parameters,” provides comprehensive tables of model and block parameters.

How to Specify a Path for a Simulink Object
Many of the commands described in this chapter require that you identify a
Simulink system or block. Identify systems and blocks by specifying their
paths:

• To identify a system, specify its name, which is the name of the file that
contains the system description, without the mdl extension.
system

• To identify a subsystem, specify the system and the hierarchy of subsystems
in which the subsystem resides.
system/subsystem1/.../subsystem

• To identify a block, specify the path of the system that contains the block and
specify the block name.
system/subsystem1/.../subsystem/block

If the block name includes a newline or carriage return, specify the block name
as a string vector and use sprintf('\n') as the newline character. For
example, these lines assign the newline character to cr, then get the value for
the Signal Generator block’s Amplitude parameter.

cr = sprintf('\n');
get_param(['untitled/Signal',cr,'Generator'],'Amplitude')
ans =

1

5-3

5 Simulation Commands

5-4

slref.book Page 4 M onday, September 27, 2004 3:20 PM
If the block name includes a slash character (/), you repeat the slash when you
specify the block name. For example, to get the value of the Location
parameter for the block named Signal/Noise in the mymodel system.

get_param('mymodel/Signal//Noise','Location')

model

slref.book Page 5 M onday, September 27, 2004 3:20 PM
5modelPurpose Execute a particular phase of the simulation of a model

Syntax [sys,x0,str,ts] = model(t,x,u,flag);

Description The model command executes a specific phase of the simulation of a Simulink
model whose name is model. Use the command’s flag argument to indicate the
phase of the simulation to be executed. See “Simulating Dynamic Systems” for
a description of the steps that Simulink uses to simulate a model.

This command is intended to allow linear analysis and other M-file
program-based tools to run a simulation step by step, gathering information
about the model’s states and outputs at each step. It is not intended for
interactive use, for example, to debug a model.

Use this command if you want to write an M-file program that needs to
examine intermediate results of a simulation. Use the sim command if the
program does not need to examine intermediate results. Use the Simulink
debugger if you need to examine intermediate results to debug a model.

Arguments sys Vector of model size data:

• sys(1) = number of continuous states

• sys(2) = number of discrete states

• sys(3) = number of inputs

• sys(4) = number of outputs

• sys(5) = reserved

• sys(6) = direct-feedthrough flag (1 = yes, 0 = no)

• sys(7) = number of sample times (= number of rows in ts)

x0 Vector that returns the initial condition of each of the system’s
states

str State-ordering strings

ts An m-by-2 matrix containing the sample time (period, offset)
information

t Time step

x State vector
5-5

model

slref.book Page 6 M onday, September 27, 2004 3:20 PM
Examples This command executes the compilation phase of the vdp model that comes
with Simulink.

vdp([], [], [], 'compile')

The following command terminates the simulation initiated in the previous
example.

vdp([], [], [], 'term')

Note You must always terminate simulation of the model by invoking the
model command with the 'term' command. Simulink does not let you close
the model until you have terminated the simulation.

See Also sim

u Inputs

flag String that indicates the simulation phase to be executed:

• 'sizes' executes the size computation phase of the
simulation. This phase determines the sizes of the model’s
inputs, outputs, state vector, etc.

• 'compile' executes the compilation phase of the simulation.
The compilation phase propagates signal and sample time
attributes. It is equivalent to selecting the Update Diagram
(Ctrl-D) option from the Simulink Edit menu.

• 'update' computes the states of the model’s blocks at time t.

• 'outputs' computes the outputs of the model’s blocks at time
t.

• 'deriv' computes the state derivatives of the model’s block at
time step t.

• 'term' causes Simulink to terminate simulation of the model.
5-6

sim

slref.book Page 7 M onday, September 27, 2004 3:20 PM
5simPurpose Simulate a dynamic system

Syntax [t,x,y] = sim(model,timespan,options,ut);
[t,x,y1, y2, ..., yn] = sim(model,timespan,options,ut);

Description The sim command executes a Simulink model, using all simulation parameter
dialog settings including Workspace I/O options.

You can supply a null ([]) matrix for any right-side argument except the first
(the model name). The sim command uses default values for unspecified
arguments and arguments specified as null matrices. The default values are
the values specified by the model. You can set optional simulation parameters,
using the sim command’s options argument. Parameters set in this way
override parameters specified by the model.

If you do not specify the left side arguments, the command logs the simulation
data specified by the Workspace I/O pane of the Simulation parameters
dialog box (see “The Workspace I/O Pane” in the online documentation for
Simulink).

If you want to simulate a continuous system, you must specify the solver
parameter, using simset. The solver defaults to VariableStepDiscrete for
purely discrete models.

Arguments t Returns the simulation’s time vector.

x Returns the simulation’s state matrix consisting of continuous
states followed by discrete states.

y Returns the simulation’s output matrix. Each column contains
the output of a root-level Outport block, in port number order. If
any Outport block has a vector input, its output takes the
appropriate number of columns.

y1,...,yn Each yi returns the output of the corresponding root-level
Outport block for a model that has n such blocks.

model Name of a block diagram.
5-7

sim

slref.book Page 8 M onday, September 27, 2004 3:20 PM
Examples This command simulates the Van der Pol equations, using the vdp model that
comes with Simulink. The command uses all default parameters.

[t,x,y] = sim('vdp')

timespan Simulation start and stop time. Specify as one of these:
tFinal to specify the stop time. The start time is 0.
[tStart tFinal] to specify the start and stop times.
[tStart OutputTimes tFinal] to specify the start and stop
times and time points to be returned in t. Generally, t will
include more time points. OutputTimes is equivalent to
choosing Produce additional output on the dialog box. For a
single-rate discrete system, the additional output times
specified by OutputTimes must be integer multiples of the
fundamental time step. For such a system, you must use an
expression of the form

Ts * [vector of integers]

where Ts is the fundamental time step to specify the additional
output times. Do not use an expression of the form 0:Ts:N*Ts.

options Optional simulation parameters specified as a structure
created by the simset command (see simset on page 5-12).

ut Optional external inputs to top-level Inport blocks. ut can be a
a MATLAB function (expressed as a string) that specifies the
input u = UT(t) at each simulation time step, a table of input
values versus time for all input ports, or a comma-separated
list of tables, ut1, ut2, ..., each of which corresponds to a
specific port. Tabular input for all ports can be in the form of a
MATLAB array or a structure. Tabular input for individual
ports must be in the form of a structure. See “Loading Input
from the Base Workspace” in the online documentation for a
description of the array and structure input formats.
5-8

sim

slref.book Page 9 M onday, September 27, 2004 3:20 PM
This command simulates the Van der Pol equations, using the parameter
values associated with the vdp model, but defines a value for the Refine
parameter.

[t,x,y] = sim('vdp', [], simset('Refine',2));

This command simulates the Van der Pol equations for 1,000 seconds, saving
the last 100 rows of the return variables. The simulation outputs values for t
and y only, but saves the final state vector in a variable called xFinal.

[t,x,y] = sim('vdp', 1000, simset('MaxRows', 100,
'OutputVariables', 'ty', 'FinalStateName', 'xFinal'));

See Also simset, simget
5-9

simplot

slref.book Page 10 M onday, Septem ber 27, 2004 3:20 PM
5simplotPurpose Plot simulation data in a figure window

Syntax simplot(data);
simplot(time, data);

Description The simplot command plots output from a simulation in a Handle Graphics
figure window. The plot looks like the display on the screen of a Scope block.
Plotting the output on a figure window allows you to annotate and print the
output.

Arguments data Data produced by one of Simulink’s output blocks (for example,
a root-level Outport block or a To Workspace block) or in one of
the output formats used by those blocks: Array, Structure,
Structure with time (see “The Workspace I/O Pane” in the
online documentation for Simulink).

time The vector of sample times produced by an output block when
you have selected Array or Structure as the simulation’s
output format. The simplot command ignores this argument if
the format of the data is Structure with time.
5-10

simplot

slref.book Page 11 M onday, Septem ber 27, 2004 3:20 PM
Examples The following sequence of commands

vdp
set_param(gcs, 'SaveOutput', 'on')
set_param(gcs, `SaveFormat', `StructureWithTime')
sim(gcs)
simplot(yout)

plots the output of the vdp demo model on a figure window as follows.

See Also sim, set_param
5-11

simset

slref.book Page 12 M onday, Septem ber 27, 2004 3:20 PM
5simsetPurpose Create or edit simulation parameters and solver properties for the sim
command

Syntax options = simset(property, value, ...);
options = simset(old_opstruct, property, value, ...);
options = simset(old_opstruct, new_opstruct);
simset

Description The simset command creates a structure called options, in which the named
simulation parameters and solver properties have specified values. All
unspecified parameters and properties take their default values. It is only
necessary to enter enough leading characters to uniquely identify the
parameter or property. Case is ignored for parameters and properties.

options = simset(property, value, ...) sets the values of the named
properties and stores the structure in options.

options = simset(old_opstruct, property, value, ...) modifies the
named properties in old_opstruct, an existing structure.

options = simset(old_opstruct, new_opstruct) combines two existing
options structures, old_opstruct and new_opstruct, into options. Any
properties defined in new_opstruct overwrite the same properties defined in
old_opstruct.

simset with no input arguments displays all property names and their possible
values.

You cannot obtain or set values of these properties and parameters using the
get_param and set_param commands.

Parameters AbsTol positive scalar {1e-6}

Absolute error tolerance. This scalar applies to all elements of the state vector.
AbsTol applies only to the variable-step solvers.

Decimation positive integer {1}

Decimation for output variables. Decimation factor applied to the return
variables t, x, and y. A decimation factor of 1 returns every data logging time
point, a decimation factor of 2 returns every other data logging time point, etc.
5-12

simset

slref.book Page 13 M onday, Septem ber 27, 2004 3:20 PM
DstWorkspace base | {current} | parent

Where to assign variables. This property specifies the workspace in which to
assign any variables defined as return variables or as output variables on the
To Workspace block.

FinalStateName string {''}

Name of final states variable. This property specifies the name of a variable in
which Simulink saves the model’s states at the end of the simulation.

FixedStep positive scalar

Fixed step size. This property applies only to the fixed-step solvers. If the model
contains discrete components, the default is the fundamental sample time;
otherwise, the default is one-fiftieth of the simulation interval.

InitialState vector {[]}

Initial continuous and discrete states. The initial state vector consists of the
continuous states (if any) followed by the discrete states (if any). InitialState
supersedes the initial states specified in the model. The default, an empty
matrix, causes the initial state values specified in the model to be used.

InitialStep positive scalar {auto}

Suggested initial step size. This property applies only to the variable-step
solvers. The solvers try a step size of InitialStep first. By default, the solvers
determine an initial step size automatically.

MaxOrder 1 | 2 | 3 | 4 | {5}

Maximum order of ode15s. This property applies only to ode15s.

MaxDataPoints nonnegative integer {0}

Limit number of output data points. This property limits the number of data
points returned in t, x, and y to the last MaxDataPoints data logging time
points. If specified as 0, the default, no limit is imposed.

MaxStep positive scalar {auto}

Upper bound on the step size. This property applies only to the variable-step
solvers and defaults to one-fiftieth of the simulation interval.
5-13

simset

slref.book Page 14 M onday, Septem ber 27, 2004 3:20 PM
OutputPoints {specified} | all

Determine output points. When set to specified, the solver produces outputs
t, x, and y only at the times specified in timespan. When set to all, t, x, and y
also include the time steps taken by the solver.

OutputVariables {txy} | tx | ty | xy | t | x | y

Set output variables. If 't', 'x', or 'y' is missing from the property string, the
solver produces an empty matrix in the corresponding output t, x, or y.

Refine positive integer {1}

Output refine factor. This property increases the number of output points by
the specified factor, producing smoother output. Refine applies only to the
variable-step solvers. It is ignored if output times are specified.

RelTol positive scalar {1e-3}

Relative error tolerance. This property applies to all elements of the state
vector. The estimated error in each integration step satisfies

e(i) <= max(RelTol*abs(x(i)),AbsTol(i))

This property applies only to the variable-step solvers and defaults to 1e-3,
which corresponds to accuracy within 0.1%.

Solver VariableStepDiscrete |
ode45 | ode23 | ode113 | ode15s | ode23s |
FixedStepDiscrete |
ode5 | ode4 | ode3 | ode2 | ode1

Method to advance time. This property specifies the solver that is used to
advance time.

SrcWorkspace {base} | current | parent

Where to evaluate expressions. This property specifies the workspace in which
to evaluate MATLAB expressions defined in the model.

Trace 'minstep', 'siminfo', 'compile' {''}

Tracing facilities. This property enables simulation tracing facilities (specify
one or more as a comma-separated list):

• The 'minstep' trace flag specifies that simulation stops when the solution
changes so abruptly that the variable-step solvers cannot take a step and
satisfy the error tolerances. By default, Simulink issues a warning message
and continues the simulation.
5-14

simset

slref.book Page 15 M onday, Septem ber 27, 2004 3:20 PM
• The 'siminfo' trace flag provides a short summary of the simulation
parameters in effect at the start of simulation.

• The 'compile' trace flag displays the compilation phases of a block diagram
model.

ZeroCross {on} | off

Enable/disable location of zero crossings. This property applies only to the
variable-step solvers. If set to off, variable-step solvers do not detect zero
crossings for blocks having intrinsic zero-crossing detection. The solvers adjust
their step sizes only to satisfy error tolerance.

Examples This command creates an options structure called myopts that defines values
for the MaxDataPoints and Refine parameters, using default values for other
parameters.

myopts = simset('MaxDataPoints', 100, 'Refine', 2);

This command simulates the vdp model for 10 seconds and uses the parameters
defined in myopts.

[t,x,y] = sim('vdp', 10, myopts);

See Also sim, simget
5-15

simget

slref.book Page 16 M onday, Septem ber 27, 2004 3:20 PM
5simgetPurpose Get options structure properties and parameters

Syntax struct = simget(model)
value = simget(model, property)
value = simget(OptionStructure, property)

Description The simget command gets simulation parameter and solver property values for
the specified Simulink model. If a parameter or property is defined using a
variable name, simget returns the variable’s value, not its name. If the
variable does not exist in the workspace, Simulink issues an error message.

struct = simget(model) returns the current options structure for the
specified Simulink model. The options structure is defined using the sim and
simset commands.

value = simget(model, property) extracts the value of the named simulation
parameter or solver property from the model.

value = simget(OptionStructure, property) extracts the value of the
named simulation parameter or solver property from OptionStructure,
returning an empty matrix if the value is not specified in the structure.
property can be a cell array containing the list of parameter and property
names of interest. If a cell array is used, the output is also a cell array.

You need to enter only as many leading characters of a property name as are
necessary to uniquely identify it. Case is ignored for property names.

Examples This command retrieves the options structure for the vdp model.

options = simget('vdp');

This command retrieves the value of the Refine property for the vdp model.

refine = simget('vdp', 'Refine');

See Also sim, simset
5-16

slref.book Page 1 M onday, September 27, 2004 3:20 PM
6

Mask Icon Drawing
Commands

This section describes commands that you can use to create programs that create or modify models.

Command Summary (p. 6-2) Brief descriptions of commands.

6 Mask Icon Drawing Commands

6-2

slref.book Page 2 M onday, September 27, 2004 3:20 PM
Command Summary
This table summarizes the commands that you can use to create icons for
masked subsystems.

Command Usage

disp Display text centered on a mask icon.

dpoly Display a transfer function on a mask icon.

fprintf Display variable text on a mask icon.

image Display an image on a mask icon.

patch Draws a color patch of a specified shape on
a mask icon.

plot Display graphics on a mask icon.

port_label Display a port label on a mask icon.

text Display text at a specified location on a
mask icon.

slref.book Page 3 M onday, September 27, 2004 3:20 PM
Specifying Parameters and Object Paths
This section explains how to specify parameters and object paths required by
model construction commands.

How to Specify Parameters for the Commands
The commands described in this chapter require that you specify arguments
that describe a system, block, or block parameter. Appendix , “Model and Block
Parameters,” provides comprehensive tables of model and block parameters.

How to Specify a Path for a Simulink Object
Many of the commands described in this chapter require that you identify a
Simulink system or block. Identify systems and blocks by specifying their
paths:

• To identify a system, specify its name, which is the name of the file that
contains the system description, without the mdl extension.
system

• To identify a subsystem, specify the system and the hierarchy of subsystems
in which the subsystem resides.
system/subsystem1/.../subsystem

• To identify a block, specify the path of the system that contains the block and
specify the block name.
system/subsystem1/.../subsystem/block

If the block name includes a newline or carriage return, specify the block name
as a string vector and use sprintf('\n') as the newline character. For
example, these lines assign the newline character to cr, then get the value for
the Signal Generator block’s Amplitude parameter.

cr = sprintf('\n');
get_param(['untitled/Signal',cr,'Generator'],'Amplitude')
ans =

1

6-3

6 Mask Icon Drawing Commands

6-4

slref.book Page 4 M onday, September 27, 2004 3:20 PM
If the block name includes a slash character (/), you repeat the slash when you
specify the block name. For example, to get the value of the Location
parameter for the block named Signal/Noise in the mymodel system.

get_param('mymodel/Signal//Noise','Location')

disp

6

slref.book Page 5 M onday, September 27, 2004 3:20 PM
-5

6disp

6

Purpose Display text on the icon of a masked subsystem

Syntax disp(text)
disp(text, 'texmode', 'on')

Description disp(text) displays text centered on the icon where text is any MATLAB
expression that evaluates to a string.

disp(text, 'texmode', 'on') allows you to use TeX formatting commands in
text. The TeX formatting commands in turn allow you to include symbols and
Greek letters in icon text. See “Mathematical Symbols, Greek Letters, and Tex

Characters” in the MATLAB documentation for information on the TeX
formatting commands supported by Simulink.

Examples The following command

disp('{\itEquation:} \alpha^2 + \beta^2 \rightarrow \gamma^2,
\chi, \phi_3 = {\bfcool}', 'texmode','on')

draws the equation that appears on this masked block icon.

See Also fprintf, port_label, text

dpoly

slref.book Page 6 M onday, September 27, 2004 3:20 PM
6dpolyPurpose Display a transfer function on the icon of a masked subsystem

Syntax dpoly(num, den)
dpoly(num, den, 'character')

Description dpoly(num, den) displays the transfer function whose numerator is num and
denominator is den.

poly(num, den, 'character') allows you to specify the name of the transfer
function’s independent variable. The default is s.

When the icon is drawn, the initialization commands are executed and the
resulting equation is drawn on the icon:

• To display a continuous transfer function in descending powers of s, enter
dpoly(num, den)

For example, for num = [0 0 1]; and den = [1 2 1]; the icon looks like this:

• To display a discrete transfer function in descending powers of z, enter
dpoly(num, den, 'z')

For example, for num = [0 0 1]; and den = [1 2 1]; the icon looks like this:

• To display a discrete transfer function in ascending powers of 1/z, enter
dpoly(num, den, 'z-')

For example, for num and den as defined previously, the icon looks like this:
6-6

dpoly

slref.book Page 7 M onday, September 27, 2004 3:20 PM
• To display a zero-pole gain transfer function, enter
droots(z, p, k)

For example, the preceding command creates this icon for these values:
z = []; p = [-1 -1]; k = 1;

You can add a fourth argument ('z' or 'z-') to express the equation in terms
of z or 1/z.

If the parameters are not defined or have no values when you create the icon,
Simulink displays three question marks (? ? ?) in the icon. When the
parameter values are entered in the mask dialog box, Simulink evaluates the
transfer function and displays the resulting equation in the icon.

See Also disp, port_label, text
6-7

fprintf

slref.book Page 8 M onday, September 27, 2004 3:20 PM
6fprintfPurpose Display variable text centered on the icon of a masked subsystem

Syntax fprintf(text)
fprintf(format, var)

Description The fprintf command displays formatted text centered on the icon and can
display format along with the contents of var.

Note While this commands is identical in name to its corresponding
MATLAB function, it provides only the functionality described above.

See Also disp, port_label, text
6-8

image

slref.book Page 9 M onday, September 27, 2004 3:20 PM
6imagePurpose Display an image on the icon of a masked subsystem

Syntax image(a)
image(a, [x, y, w, h])

image(a, [x, y, w, h], rotation)

Description image(a) displays the image a where a is an M-by-N-by-3 array of RGB values.
You can use the MATLAB commands imread and ind2rgb to read and convert
bitmap files to the necessary matrix format.

image(a, [x, y, w, h]) creates the image at the specified position relative to
the lower left corner of the mask.

image(a, [x, y, w, h], rotation) allows you to specify whether the image
rotates ('on') or remains stationary ('off') as the icon rotates. The default is
'off'.

Examples This command

image(imread('icon.tif'))

reads the icon image from a TIFF file named icon.tif in the MATLAB path.

See Also patch, plot
6-9

patch

slref.book Page 10 M onday, Septem ber 27, 2004 3:20 PM
6patchPurpose Draw a color patch of a specified shape on the icon of a masked subsytem

Syntax patch(x, y)

Description patch(x, y) creates a solid patch having the shape specified by the coordinate
vectors x and y. The patch’s color is the current foreground color.

patch(x, y, [r g b]) creates a solid patch of the color specified by the vector
[r g b], where r is the red component, g the green, and b the blue. For
example,

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask’s icon.

Examples This command

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask’s icon.

See Also image, plot
6-10

plot

slref.book Page 11 M onday, Septem ber 27, 2004 3:20 PM
6plotPurpose Draw a graph connecting a series of points

Syntax plot(Y)
plot(X1,Y1,X2,Y2,...)

Description plot(Y) plots, for a vector Y, each element against its index. If Y is a matrix, it
plots each column of the matrix as though it were a vector.

plot(X1,Y1,X2,Y2,...) plots the vectors Y1 against X1, Y2 against X2, and so
on. Vector pairs must be the same length and the list must consist of an even
number of vectors.

Plot commands can include NaN and inf values. When NaNs or infs are
encountered, Simulink stops drawing, then begins redrawing at the next
numbers that are not NaN or inf.

The appearance of the plot on the icon depends on the value of the Drawing
coordinates parameter. For more information, see “Icon Options” in the online
Simulink documentation.

Simulink displays three question marks (? ? ?) in the block icon and issues
warnings in these situations:

• When the values for the parameters used in the drawing commands are not
yet defined (for example, when the mask is first created and values have not
yet been entered in the mask dialog box)

• When a masked block parameter or drawing command is entered incorrectly

Examples This command

plot([0 1 5], [0 0 4])

generates the plot that appears on the icon for the Ramp block, in the Sources
library.

See Also image
6-11

port_label

slref.book Page 12 M onday, Septem ber 27, 2004 3:20 PM
6port_labelPurpose Draw a port label on the icon of a masked subsystem

Syntax port_label(port_type, port_number, label)
port_label(port_type, port_number, label,'texmode','on')

Description port_label(port_type, port_number, label) draws a label on a port where
port_type is either 'input' or 'output', port_number is an integer, and label
is a string specifying the port’s label.

port_label(port_type, port_number, label,'texmode','on') lets you use
TeX formatting commands in label. The TeX formatting commands allow you
to include symbols and Greek letters in the port label. See “Mathematical
Symbols, Greek Letters, and Tex Characters” in the MATLAB documentation
for information on the TeX formatting commands supported by Simulink.

Examples The command

port_label('input', 1, 'a')

defines a as the label of input port 1.

The commands

disp('Card\nSwapper');
port_label('input',1,'\spadesuit','texmode','on');
port_label('output',1,'\heartsuit','texmode','on');

draw playing card symbols as the labels of the ports on a masked subsystem.

See Also disp, fprintf, text
6-12

text

slref.book Page 13 M onday, Septem ber 27, 2004 3:20 PM
6textPurpose Display text at a specific location on the icon of a masked subsystem

Syntax text(x, y, text)
text(x, y, text, 'horizontalAlignment', halign,

'verticalAlignment', valign)
text(x, y, text, 'texmode', 'on')

Description The text command places a character string (text or the contents of
stringvariablename) at a location specified by the point (x,y). The units
depend on the Drawing coordinates parameter. For more information, see
“Icon Options” in the online Simulink documentation.

text(x,y, text, 'texmode', 'on') allows you to use TeX formatting
commands in text. The TeX formatting commands in turn allow you to include
symbols and Greek letters in icon text. See “Mathematical Symbols, Greek
Letters, and Tex Characters” in the MATLAB documentation for information
on the TeX formatting commands supported by Simulink.

You can optionally specify the horizontal and/or vertical alignment of the text
relative to the point (x, y) in the text command.

The text command offers the following horizontal alignment options.

The text command offers the following vertical alignment options.

Option Aligns

left The left end of the text at the specified point

right The right end of the text at the specified point

center The center of the text at the specified point

Option Aligns

base The baseline of the text at the specified point

bottom The bottom line of the text at the specified point

middle The midline of the text at the specified point
6-13

text

slref.book Page 14 M onday, Septem ber 27, 2004 3:20 PM
Note While this commands is identical in name to its corresponding
MATLAB function, it provides only the functionality described above.

Examples The command

text(0.5, 0.5, 'foobar', 'horizontalAlignment', 'center')

centers foobar in the icon.

The command

text(.05,.5,'{\itEquation:} \Sigma \alpha^2 +
\beta^2 \rightarrow \infty, \Pi, \phi_3 = {\bfcool}',
'hor','left','texmode','on')

draws a left-aligned equation on the icon.

See Also disp, fprintf, port_label

cap The capitals line of the text at the specified point

top The top of the text at the specified point

Option Aligns
6-14

slref.book Page 1 M onday, September 27, 2004 3:20 PM
7

Simulink Debugger
Commands

Command Summary
The following table lists the debugger commands. The table’s Repeat column
specifies whether pressing the Return key at the command line repeats the
command. Detailed descriptions of the commands follow the table.

Command
Short
Form Repeat Description

animate ani No Enable/disable animation mode.

ashow as No Show an algebraic loop.

atrace at No Set algebraic loop trace level.

bafter ba No Insert a breakpoint after a method.

break b No Insert a breakpoint before a method.

bshow bs No Show a specified block.

clear cl No Clear breakpoints from a model.

continue c Yes Continue the simulation.

disp d Yes Display a block’s I/O when the
simulation stops.

elist el No Display method execution order.

emode em No Toggle between accelerated and
normal mode

7 Simulink Debugger Commands

7-2

slref.book Page 2 M onday, September 27, 2004 3:20 PM
etrace et No Enable or disable method tracing.

help ? or h No Display help for debugger commands.

minor m No Enable or disable breakpoints in
minor time steps.

nanbreak na No Set or clear nonfinite value break
mode

next n Yes Go to start of the next time step.

probe p No Display block data.

quit q No Abort simulation.

run r No Run the simulation to completion.

slist sli No Display a model’s sorted lists.

states state No Display current state values.

status stat No Display debugging options in effect.

step s Yes Advance the simulation by one or
more methods.

stop sto No Stop the simulation.

strace i No Set solver trace level.

systems sys No List a model’s nonvirtual systems.

tbreak tb No Set or clear a time breakpoint.

trace tr Yes Display a block’s I/O each time the
block executes.

undisp und Yes Remove a block from the debugger’s
list of display points.

Command
Short
Form Repeat Description

slref.book Page 3 M onday, September 27, 2004 3:20 PM
untrace unt Yes Remove a block from the debugger’s
list of trace points.

where w No Display the current location of the
simulation in the simulation loop.

xbreak x No Break when the debugger encounters
a step-size-limiting state.

zcbreak zcb No Toggle breaking at nonsampled
zero-crossing events.

zclist zcl No List blocks containing nonsampled
zero crossings.

Command
Short
Form Repeat Description
7-3

animate

slref.book Page 4 M onday, September 27, 2004 3:20 PM
7animatePurpose Enable or disable animation mode

Syntax animate [delay | stop]

Arguments

Description animate without any arguments enables animation mode. animate delay
enables animation mode and specifies delay as the time delay in seconds
between method calls. animate stop disables animation mode.

See Also continue

delay Length in seconds between method calls (1 second by default)

stop Disable animation mode.
7-4

ashow

slref.book Page 5 M onday, September 27, 2004 3:20 PM
7ashowPurpose Show an algebraic loop

Syntax ashow <gcb | s:b | s#n | clear>

Arguments

Description ashow without any arguments lists all of a model’s algebraic loops in the
MATLAB Command Window. ashow gcb or ashow s:b highlights the algebraic
loop that contains the specified block. ashow s#n highlights the nth algebraic
loop in system s. The ashow clear command removes algebraic loop highlights
from the model diagram.

See Also atrace, slist

gcb Current block.

s:b The block whose system index is s and block index is b.

s#n The algebraic loop numbered n in system s.

clear Switch that clears loop coloring.
7-5

atrace

slref.book Page 6 M onday, September 27, 2004 3:20 PM
7atracePurpose Set algebraic loop trace level

Syntax atrace level

Arguments

Description The atrace command sets the algebraic loop trace level for a simulation.

See Also systems, states

level Trace level (0 = none, 4 = everything).

Command Displays for Each Algebraic Loop

atrace 0 No information

atrace 1 The loop variable solution, the number of iterations
required to solve the loop, and the estimated solution error

atrace 2 Same as level 1

atrace 3 Level 2 plus Jacobian matrix used to solve loop

atrace 4 Level 3 plus intermediate solutions of the loop variable
7-6

bafter

slref.book Page 7 M onday, September 27, 2004 3:20 PM
7bafterPurpose Insert a breakpoint after a specified method

Syntax bafter
bafter m:mid
bafter <sid:bid | gcb> [mth] [tid:TID]
bafter <s:sid | gcs> [mth] [tid:TID]
bafter mdl [mth] [tid:TID]

Arguments

Description bafter inserts a breakpoint after the current method.

bafter m:mid inserts a breakpoint after the method specified by mid (see
“Method ID” on page 13-11).

bafter sid:bid inserts a breakpoint after each invocation of the method of the
block specified by sid:bid (see “Block ID” on page 13-11) in major time steps.
bafter gcb inserts a breakpoint after each invocation of a method of the
currently selected block (see gcb) in major times steps. To break at invocation
of a block’s methods in minor time steps, execute minor before or after
executing this form of the bafter command.

bafter s:sid inserts a breakpoint after each method of the root system or
nonvirtual subsystem specified by the system ID: sid.

Note The systems command displays the system IDs for all nonvirtual
systems in the currently selected model.

mid method ID

sid:bid block ID

gcb currently selected block

sid system ID

gcs currently selected system

mdl currently selected model

mth a method name, e.g., Outputs.Major

TID task ID
7-7

bafter

slref.book Page 8 M onday, September 27, 2004 3:20 PM
bafter gcs inserts a breakpoint after each method of the currently selected
nonvirtual system.

bafter mdl inserts a breakpoint after each method of the currently selected
model.

The optional mth parameter allow you to set a breakpoint after a particular
block, system, or model method and task. For example, bafter gcb Outputs
sets a breakpoint after the Outputs method of the currently selected block.

The optional TID parameter allows you to set a breakpoint after invocation of
a method by a particular task. For example, suppose that the currently selected
nonvirtual subsystem operates on task 2 and 3. Then bafter gcs Outputs
tid:2 sets a breakpoint after the invocation of the subsystem’s Outputs
method that occurs when task 2 is active.

See Also bafter, tbreak, xbreak, nanbreak, zcbreak, clear, where, slist, systems
7-8

break

slref.book Page 9 M onday, September 27, 2004 3:20 PM
7breakPurpose Insert a breakpoint before a specified method.

Syntax break
break m:mid
break <sid:bid | gcb> [mth] [tid:TID]
break <s:sid | gcs> [mth] [tid:TID]
break mdl [mth] [tid:TID]

Arguments

Description break inserts a breakpoint before the current method.

break m:mid inserts a breakpoint before the method specified by mid (see
“Method ID”).

break sid:bid inserts a breakpoint before each invocation of the method of the
block specified by sid:bid (see “Block ID”) in major time steps. break gcb
inserts a breakpoint before each invocation of a method of the currently
selected block (see gcb) in major times steps. To break before invocation of a
block’s methods in minor time steps, execute minor before or after executing
this form of the bafter command.

break s:sid inserts a breakpoint at each method of the root system or
nonvirtual subsystem specified by the system ID: sid.

Note The systems command displays the system IDs for all nonvirtual
systems in the currently selected model.

mid method ID

sid:bid block ID

gcb currently selected block

sid system ID

gcs currently selected system

mdl currently selected model

mth a method name, e.g., Outputs.Major

TID task ID
7-9

break

slref.book Page 10 M onday, Septem ber 27, 2004 3:20 PM
break gcs inserts a breakpoint at each method of the currently selected
nonvirtual system.

break mdl inserts a breakpoint at each method of the currently selected model.

The optional mth parameter allow you to set a breakpoint at a particular block,
system, or model method. For example, break gcb Outputs sets a breakpoint
at the Outputs method of the currently selected block.

The optional TID parameter allows you to set a breakpoint at the invocation of
a method by a particular task. For example, suppose that the currently selected
nonvirtual subsystem operates on task 2 and 3. Then break gcs Outputs
tid:2 sets a breakpoint at the invocation of the subsystem’s Outputs method
that occurs when task 2 is active.

See Also bafter, tbreak, xbreak, nanbreak, zcbreak, clear, where, slist, systems
7-10

bshow

slref.book Page 11 M onday, Septem ber 27, 2004 3:20 PM
7bshowPurpose Show a specified block

Syntax bshow s:b

Arguments

Description The bshow command opens the model window containing the specified block
and selects the block.

See Also slist

s:b The block whose system index is s and block index is b.
7-11

clear

slref.book Page 12 M onday, Septem ber 27, 2004 3:20 PM
7clearPurpose Clear breakpoints from a model.

Syntax clear
clear m:mid
clear id
clear <sid:bid | gcb>

Arguments

Description clear clears a breakpoint from the current method.

clear m:mid clears a breakpoint from the method specified by mid.

clear id clears the breakpoint specified by the breakpoint ID id.

clear sid:bid clears any breakpoints set on the methods of the block specified
by sid:bid.

clear gcb clears any breakpoints set on the methods of the currently selected
block.

See Also break, bafter, slist

mid method ID

id breakpoint ID

sid:bid block ID

gcb currently selected block
7-12

continue

slref.book Page 13 M onday, Septem ber 27, 2004 3:20 PM
7continuePurpose Continue the simulation

Syntax continue

Description The continue command continues the simulation from the current breakpoint.
If animation mode is not enabled, the simulation continues until it reaches
another breakpoint or its final time step. If animation mode is enabled, the
simulation continues in animation mode to the first method of the next major
time step, ignoring breakpoints.

See Also run, stop, quit, animate
7-13

disp

slref.book Page 14 M onday, Septem ber 27, 2004 3:20 PM
7dispPurpose Display a block’s I/O when the simulation stops

Syntax disp
disp gcb
disp s:b

Arguments

Description The disp command registers a block as a display point. The debugger displays
the inputs and outputs of all display points in the MATLAB Command Window
whenever the simulation halts. Invoking disp without arguments shows a list
of display points. Use undisp to unregister a block.

See Also undisp, slist, probe, trace

s:b The block whose system index is s and block index is b.

gcb Current block.
7-14

elist

slref.book Page 15 M onday, Septem ber 27, 2004 3:20 PM
7elistPurpose List simulation methods in the order in which they are executed during a
simulation

Syntax elist m:mid [tid:TID]
elist <gcs | s:sid> [mth] [tid:TID]
elist <gcb | sid:bid> [mth] [tid:TID]

Description elist m:mid lists the methods invoked by the system or nonvirtual subsystem
method corresponding to the method id mid (see the where command for
information on method IDs), e.g.,

The method list specifies the calling method followed by the methods that it
calls in the order in which they are invoked. The entry for the calling method
includes

• The name of the method

The name of the method is prefixed by the type of system that defines the
method, e.g., RootSystem.

• The name of the model or subsystem instance on which the method is
invoked

• The ID of the task that invokes the method

sldebug @19): elist n:19

RootSystem.Outputs 'vdp' [tid=0] :
 0:0 Integrator.Outputs 'x1' [tid=0]
 0:1 Outport.Outputs 'Out1' [tid=0]
 0:2 Integrator.Outputs 'x2' [tid=0]
 ...

Calling method

Block id Method Task idBlock
7-15

elist

slref.book Page 16 M onday, Septem ber 27, 2004 3:20 PM
The entry for each called method includes

• the ID (sid:bid) of the block instance on which the method is invoked

The block ID is prefixed by a number specifying the system that contains the
block (the sid). This allows Simulink to assign the same block ID to blocks
residing in different subsystems.

• the name of the method

The method name is prefixed with the type of block that defines the method,
e.g., Integrator.

• the name of the block instance on which the method is invoked

• the task that invokes the method

The optional task ID parameter (tid:TID) allows you to restrict the displayed
lists to methods invoked for a specified task. You can specify this option only
for system or atomic subsystem methods that invoke Outputs or Update
methods.

elist <gcs | s:sid> lists the methods executed for the currently selected
system (specified by the gcs command) or the system or nonvirtual subsystem
specified by the system ID sid, e.g.,

The system ID of a model’s root system is 0. You can use the debugger’s system
command to determine the system IDs of a model’s subsystems.

(sldebug @19): elist gcs

RootSystem.Start 'vdp':
 0:4 Scope.Start 'Scope'
 0:5 Fcn.Start 'Fcn'
 0:6 Product.Start 'Product'
 0:7 Gain.Start 'Mu'
 0:8 Sum.Start 'Sum'

RootSystem.Initialize 'vdp':
 0:0 Integrator.Initialize 'x1'
 ...
7-16

elist

slref.book Page 17 M onday, Septem ber 27, 2004 3:20 PM
Note The elist and where commands use block IDs to identify subsystems
in their output. The block ID for a subsystem is not the same as the system ID
displayed by the system command. Use the elist sid:bid form of the elist
command to display the methods of a subsystem whose block ID appears in
the output of a previous invocation of the elist or where command.

elist <gcs | s:sid> mth lists methods of type mth to be executed for the
system specified by the gcs command or the system ID sid, e.g.,

Use elist gcb to list the methods invoked by the subsystem currently selected
in the model.

See Also where, slist, system

(sldebug @19): elist gcs Start

RootSystem.Start 'vdp':
 0:4 Scope.Start 'Scope'
 0:5 Fcn.Start 'Fcn'
 0:6 Product.Start 'Product'
 0:7 Gain.Start 'Mu'
 0:8 Sum.Start 'Sum'
7-17

emode

slref.book Page 18 M onday, Septem ber 27, 2004 3:20 PM
7emodePurpose Toggle model execution between accelerated and normal mode

Syntax emode

Description Toggles the simulation between accelerated and normal mode when using the
Simulink Accelerator. See “Using the Simulink Accelerator with the Simulink
Debugger” in Using Simulink for more information.
7-18

etrace

slref.book Page 19 M onday, Septem ber 27, 2004 3:20 PM
7etracePurpose Enable or disable method tracing

Syntax etrace level level-number

Description This command enables or disables method tracing, depending on the value of
level:

When method tracing is on, the debugger prints a message at the command line
every time a method of the specified level is entered or exited. The message
specifies the current simulation time, whether the simulation is entering or
exiting the method, the method id and name, and the name of the model,
system, or block to which the method belongs.

See Also elist, where, trace

Level Description

0 Turn tracing off.

1 Trace model methods .

2 Trace model and system methods.

3 Trace model, system, and block methods.
7-19

help

slref.book Page 20 M onday, Septem ber 27, 2004 3:20 PM
7helpPurpose Display help for debugger commands

Syntax help

Description The help command displays a list of debugger commands in the command
window. The list includes the syntax and a brief description of each command.
7-20

minor

slref.book Page 21 M onday, Septem ber 27, 2004 3:20 PM
7minorPurpose Enable or disable breakpoints in minor time steps

Syntax minor

Description The minor command causes the debugger to enable or disable minor step
breakpoint mode. By default, executing break <sid:bid | gcb> sets
breakpoints only on invocations of a block’s methods, e.g., Outputs, in major
time steps. To enable breakpoints at invocations of the methods in minor time
steps, you must execute minor before or after executing the break command. To
disable breaking in minor steps, execute minor again.

See Also break, bafter
7-21

nanbreak

slref.book Page 22 M onday, Septem ber 27, 2004 3:20 PM
7nanbreakPurpose Set or clear nonfinite value break mode

Syntax nanbreak

Description The nanbreak command causes the debugger to break whenever the simulation
encounters a nonfinite (NaN or Inf) value. If nonfinite break mode is set,
nanbreak clears it.

See Also break, bafter, xbreak, tbreak, zcbreak
7-22

next

slref.book Page 23 M onday, Septem ber 27, 2004 3:20 PM
7nextPurpose Advance the simulation to the start of the next method at the current level in
the model’s execution list

Syntax next

Description The next command advances the simulation to the start of the next method at
the current level in the model’s method execution list.

Note The next command has the same effect as the step over command. See
the step documentation for more information.

See Also step
7-23

probe

slref.book Page 24 M onday, Septem ber 27, 2004 3:20 PM
7probePurpose Display block data.

Syntax probe [<s:b | gcb>] [level io | (all)]

Arguments

Description probe causes the debugger to enter or exit probe mode. In probe mode, the
debugger displays the I/O of any block you select. To exit probe mode, enter any
command. probe gcb displays the I/O of the currently selected block. probe
s:b displays the I/O of the block whose index is s:b.

See Also disp, trace

s:b The block whose system index is s and block index is b.

gcb Current block.

level io Display block’s I/O.

level all Display all information regarding a block’s current state,
including inputs and outputs, states, and zero crossings.
7-24

quit

slref.book Page 25 M onday, Septem ber 27, 2004 3:20 PM
7quitPurpose Abort simulation

Syntax quit

Description The quit command terminates the current simulation.

See Also stop
7-25

run

slref.book Page 26 M onday, Septem ber 27, 2004 3:20 PM
7runPurpose Run the simulation to completion

Syntax run

Description The run command runs the simulation from the current breakpoint to its final
time step. It ignores breakpoints and display points.

See Also continue, stop, quit
7-26

slist

slref.book Page 27 M onday, Septem ber 27, 2004 3:20 PM
7slistPurpose Display the sorted list of a model’s root system and of each of its nonvirtual
subsystems

Syntax slist

Description The slist command displays the sorted list of a model’s root system and each
of its nonvirtual subsystems. For example, the sorted list for the vdp model’s
root system is

---- Sorted list for 'vdp' [9 nonvirtual blocks, directFeed=0]
 0:0 'vdp/x1' (Integrator)
 0:1 'vdp/Out1' (Outport)
 0:2 'vdp/x2' (Integrator)
 0:3 'vdp/Out2' (Outport)
 0:4 'vdp/Scope' (Scope)
 0:5 'vdp/Fcn' (Fcn)
 0:6 'vdp/Product' (Product)
 0:7 'vdp/Mu' (Gain)
 0:8 'vdp/Sum' (Sum)

For each system (root or nonvirtual), the slist command displays a title line
followed by an entry for each block in the order in which the blocks appear in
the sorted list. The title line specifies the name of the system, the number of
nonvirtual blocks that the system contains, and the number of blocks in the
system that have direct feedthrough ports. Each block entry lists the block’s id
and the name and type of the block. The block id consists of a system index and
a block index separated by a colon (s:b). The block index is the position of the
block in the sorted list. The system index is the order in which Simulink
generated the system’s sorted list. The system index has no special
significance. It simply allows blocks that appear in the same position in
different sorted lists to have unique identifiers.

A sorted list is a list of a root system or nonvirtual subsystem’s blocks sorted
according to data dependencies and other criteria. Simulink uses sorted lists to
create block method execution lists (see elist) for root system and nonvirtual
subsystem methods that invoke the corresponding methods of the blocks that
the root system or subsystem contains. In general, root system and nonvirtual
subsystem methods invoke the block methods in the same order as the blocks
appear in the sorted list. However, significant exceptions occur. For example,
execution lists for multitask models group all blocks operating at the same rate
7-27

slist

slref.book Page 28 M onday, Septem ber 27, 2004 3:20 PM
(i.e., in the same task) together with slower groups appearing later than faster
groups. The grouping of methods by task can result in an order of block method
execution that differs from the order in which blocks appear in the sorted list.
However, within groups, methods execute in the same order as the
corresponding blocks appear in the sorted list.

See Also systems, elist
7-28

states

slref.book Page 29 M onday, Septem ber 27, 2004 3:20 PM
7statesPurpose Display current state values

Syntax states

Description The states command displays a list of the current states of the model. The
display lists the value, index, and name of each state.

See Also ishow
7-29

status

slref.book Page 30 M onday, Septem ber 27, 2004 3:20 PM
7statusPurpose Display debugging options in effect

Syntax status

Description The status command displays a list of the debugging options in effect.
7-30

step

slref.book Page 31 M onday, Septem ber 27, 2004 3:20 PM
7stepPurpose Advance the simulation by one or more methods

Syntax step [in into]
step over
step out
step top
step blockmth

Description This command advances the simulation

• into (step [in into]), over (step over), or out of the method at which the
simulation is currently stopped (step out)

• to the top of the simulation loop (step top), i.e., to the start of the first
method executed at the start of the next time step

• to the next method that operates on a block (step blockmth)

The following diagram illustrates the effect of various forms of the step
command.

If this command advances the simulation to the start of a block method, the
debugger points the debug pointer at the block on which the method operates.

See Also next, where, elist

 0 >> vdp.Simulate
 1 vdp.Start
 ...
 15 vdp.Outputs.InvariantConstants
 17 >> vdp.SimulationLoop
 18 >> vdp.Outputs.Major
 19 RootSystem.Outputs 'vdp'
 20 0:0 Integrator.Outputs 'x1'
 21 0:1 Outport.Outputs 'Out1'
 ...
 28 0:8 Sum.Outputs 'Sum'
 29 vdp.Update
 33 vdp.Solver

step

step top

step out

step over
7-31

stop

slref.book Page 32 M onday, Septem ber 27, 2004 3:20 PM
7stopPurpose Stop the simulation

Syntax stop

Description The stop command stops the simulation.

See Also continue, run, quit
7-32

strace

slref.book Page 33 M onday, Septem ber 27, 2004 3:20 PM
7stracePurpose Set solver trace level.

Syntax strace [0 | 1 | 2 | 3 | 4]

Description The strace command causes the solver to display diagnostic information at
the command line after each debugger command that involves the solver. The
command’s numeric argument specifies the level of detail of the diagnostic
information. Valid values range from 0 (no information) to 4 (maximum detail).

See Also atrace, trace
7-33

systems

slref.book Page 34 M onday, Septem ber 27, 2004 3:20 PM
7systemsPurpose List a model’s nonvirtual systems

Syntax systems

Description The systems command lists a model’s nonvirtual systems in the MATLAB
Command Window.

See Also slist
7-34

tbreak

slref.book Page 35 M onday, Septem ber 27, 2004 3:20 PM
7tbreakPurpose Set or clear a time breakpoint

Syntax tbreak

tbreak t

Description The tbreak command sets a breakpoint at the specified time step. If a
breakpoint already exists at the specified time, tbreak clears the breakpoint.
If you do not specify a time, tbreak toggles a breakpoint at the current time
step.

See Also break, bafter, xbreak, nanbreak, zcbreak
7-35

trace

slref.book Page 36 M onday, Septem ber 27, 2004 3:20 PM
7tracePurpose Display a block’s I/O each time the block executes

Syntax trace gcb
trace s:b

Arguments

Description The trace command registers a block as a trace point. The debugger displays
the I/O of each registered block each time the block executes.

See Also disp, probe, untrace, slist, strace

s:b The block whose system index is s and block index is b.

gcb Current block.
7-36

undisp

slref.book Page 37 M onday, Septem ber 27, 2004 3:20 PM
7undispPurpose Remove a block from the debugger’s list of display points

Syntax undisp gcb
undisp s:b

Arguments

Description The undisp command removes the specified block from the debugger’s list of
display points.

See Also disp, slist

s:b The block whose system index is s and block index is b.

gcb Current block.
7-37

untrace

slref.book Page 38 M onday, Septem ber 27, 2004 3:20 PM
7untracePurpose Remove a block from the debugger’s list of trace points

Syntax untrace gcb
untrace s:b

Arguments

Description The untrace command removes the specified block from the debugger’s list of
trace points.

See Also trace, slist

s:b The block whose system index is s and block index is b.

gcb Current block.
7-38

where

slref.book Page 39 M onday, Septem ber 27, 2004 3:20 PM
7wherePurpose Display the current location of the simulation in the simulation loop

Syntax where [detail]

Description The where command displays the current location of the simulation in the
simulation loop, for example,

The display consists of a list of simulation nodes with the last entry being the
node that is about to be entered or exited. Each entry contains the following
information:

• Method ID

The method ID identifies a specific invocation of a method.

• A symbol specifying its state:

- >> (active)

- >|(about to be entered)

- <|(about to be exited)

• Name of the method invoked (e.g., RootSystem.Start)

• Name of the block or system on which the method is invoked (e.g., Sum)

• System and block ID (sid:bid) of the block on which the method is invoked

For example, 0:8 indicates that the specified method operates on block 8 of
system 0.

sldebug @7): where
 0 >> vdp.Simulate
 1 >> vdp.Start
 2 >> RootSystem.Start 'vdp'
 7 >| 0:8 Sum.Start 'Sum'

Block ID MethodState BlockMethod ID
7-39

where

slref.book Page 40 M onday, Septem ber 27, 2004 3:20 PM
where detail, where detail is any nonnegative integer, includes inactive
nodes in the display.

See Also step

0 >> vdp.Simulate
 1 >> vdp.Start
 2 >> RootSystem.Start 'vdp'
 3 0:4 Scope.Start 'Scope'
 4 0:5 Fcn.Start 'Fcn'
 5 0:6 Product.Start
'Product'
 6 0:7 Gain.Start 'Mu'
 7 >| 0:8 Sum.Start 'Sum'
7-40

xbreak

slref.book Page 41 M onday, Septem ber 27, 2004 3:20 PM
7xbreakPurpose Break when the debugger encounters a step-size-limiting state

Syntax xbreak

Description The xbreak command pauses execution of the model when the debugger
encounters a state that limits the size of the steps that the solver takes. If
xbreak mode is already on, xbreak turns the mode off.

See Also break, bafter, zcbreak, tbreak, nanbreak
7-41

zcbreak

slref.book Page 42 M onday, Septem ber 27, 2004 3:20 PM
7zcbreakPurpose Toggle breaking at nonsampled zero-crossing events

Syntax zcbreak

Description The zcbreak command causes the debugger to break when a nonsampled
zero-crossing event occurs. If zero-crossing break mode is already on, zcbreak
turns the mode off.

See Also break, bafter, xbreak, tbreak, nanbreak, zclist
7-42

zclist

slref.book Page 43 M onday, Septem ber 27, 2004 3:20 PM
7zclistPurpose List blocks containing nonsampled zero crossings

Syntax zclist

Description The zclist command displays a list of blocks in which nonsampled zero
crossings can occur. The command displays the list in the MATLAB Command
Window.

See Also zcbreak
7-43

zclist

slref.book Page 44 M onday, Septem ber 27, 2004 3:20 PM
7-44

slref.book Page 1 M onday, September 27, 2004 3:20 PM
8

Model and Block
Parameters

The following sections lists parameters that you can set, using the set_param command.

“Model Parameters” on page 8-2 Parameters specific to models

“Common Block Parameters” on
page 8-7

Parameters that all blocks have

“Block-Specific Parameters” on
page 8-10

Parameters that a specific block has

“Mask Parameters” on page 8-26 Parameters of masked subsystem

8 Model and Block Parameters

8-2

slref.book Page 2 M onday, September 27, 2004 3:20 PM
Model Parameters
This table lists and describes parameters that describe a model. The
parameters appear in the order they are defined in the model file, described in
Chapter 9, “Model File Format.” The table also includes model callback
parameters, (see “Using Callback Routines”). The Description column
indicates where you can set the value on the Simulation Parameters dialog
box. Model parameters that are simulation parameters are described in more
detail in “The Simulation Parameters Dialog Box”. Examples showing how to
change parameters follow the table.

Parameter values must be specified as quoted strings. The string contents
depend on the parameter and can be numeric (scalar, vector, or matrix), a
variable name, a filename, or a particular value. The Values column shows the
type of value required, the possible values (separated with a vertical line), and
the default value, enclosed in braces.

Table 8-1: Model Parameters

Parameter Description Values

AbsTol Absolute error tolerance scalar {1e 6}

AlgebraicLoopMsg Algebraic loop diagnostic none | {warning} | error

ArrayBoundsChecking Enable array bounds checking 'none' | 'warning' | 'error'

BooleanDataType Enable Boolean mode on | {off}

BufferReuse Enable reuse of block I/O buffers {on} | off

CloseFcn Close callback command or variable

ConfigurationManager Configuration manager for this model text

ConsistencyChecking Consistency checking on | {off}

Created Date and time model was created text

Creator Name of model creator text

Decimation Decimation factor scalar {1}

DefaultBlockFontSize Default font size for blocks contained by
this model

{10}

Model Parameters

slref.book Page 3 M onday, September 27, 2004 3:20 PM
Description Description of this model text

ExternalInput Time and input variable names scalar or vector [t, u]

FinalStateName Final state name variable {xFinal}

FixedStep Fixed step size scalar {auto}

InitialState Initial state name or values variable or vector {xInitial}

InitialStep Initial step size scalar {auto}

InvariantConstants Invariant constant setting on | {off}

LimitDataPoints Limit output on | {off}

LoadExternalInput Load input from workspace on | {off}

LoadInitialState Load initial state on | {off}

MaxDataPoints Maximum number of output data points
to save

scalar {1000}

MaxOrder Maximum order for ode15s 1 | 2 | 3 | 4 | {5}

MaxStep Maximum step size scalar {auto}

MinStepSizeMsg Minimum step size diagnostic {warning} | error

ModelVersionFormat Format of model’s version number text

ModifiedBy Last modifier of this model text

ModifiedDateFormat Format of modified date text

Name Model name text

ObjectParameters Names/attributes of model parameters structure

OutputOption Output option AdditionalOutputTimes |
{RefineOutputTimes} |
SpecifiedOutputTimes

OutputSaveName Simulation output name variable {yout}

OutputTimes Values for chosen OutputOption vector {[]}

Table 8-1: Model Parameters

Parameter Description Values
8-3

8 Model and Block Parameters

8-4

slref.book Page 4 M onday, September 27, 2004 3:20 PM
PaperOrientation Printing paper orientation portrait | {landscape}

PaperPosition Position of diagram on paper [left, bottom, width, height]

PaperPositionMode Paper position mode auto | {manual}

PaperSize Size of PaperType in PaperUnits [width height] (read only)

PaperType Printing paper type {usletter} | uslegal | a0 |
a1 | a2 | a3 | a4 | a5 | b0 |
b1 | b2 | b3 | b4 | b5 |
arch-A | arch-B | arch-C |
arch-D | arch-E | A | B | C |
D | E | tabloid

PaperUnits Printing paper size units normalized | {inches} |
centimeters | points

PostLoadFcn Post-load callback command or variable

PreLoadFcn Preload callback command or variable

Refine Refine factor scalar {1}

RelTol Relative error tolerance scalar {1e 3}

SampleTimeColors Sample Time Colors menu option on | {off}

SaveFcn Save callback command or variable

SaveFinalState Save final state on | {off}

SaveFormat Format used to save data to the MATLAB
workspace

Array | Structure |
StructureWithTime

SaveOutput Save simulation output {on} | off

SaveState Save states on | {off}

SaveTime Save simulation time {on} | off

Table 8-1: Model Parameters

Parameter Description Values

Model Parameters

slref.book Page 5 M onday, September 27, 2004 3:20 PM
ScreenColor Background color of the model window black | {white} | red | green
| blue | cyan | magenta |
yellow | gray | lightBlue |
orange | darkGreen

ShowLineWidths Show Line Widths menu option on | {off}

SimulationCommand Executes a simulation command. start | stop | pause |
continue | update

SimParamPage Simulation Parameters dialog box page
to display (page last displayed)

{Solver} | WorkspaceI/O |
Diagnostics

Solver Solver {ode45} | ode23 | ode113 |
ode15s | ode23s | ode5 | ode4
| ode3 | ode2 | ode1 |
FixedStepDiscrete |
VariableStepDiscrete

StartFcn Start simulation callback command or variable

StartTime Simulation start time scalar {0.0}

StateSaveName State output name variable {xout}

StopFcn Stop simulation callback command or variable

StopTime Simulation stop time scalar {10.0}

TimeSaveName Simulation time name variable {tout}

UnconnectedInputMsg Unconnected input ports diagnostic none | {warning} | error

UnconnectedLineMsg Unconnected lines diagnostic none | {warning} | error

UnconnectedOutputMsg Unconnected output ports diagnostic none | {warning} | error

Version Simulink version used to modify the
model (read-only)

(release)

WideVectorLines Wide Vector Lines menu option on | {off}

ZeroCross Intrinsic zero-crossing detection (see
“Zero-Crossing Detection”)

{on} | off

Table 8-1: Model Parameters

Parameter Description Values
8-5

8 Model and Block Parameters

8-6

slref.book Page 6 M onday, September 27, 2004 3:20 PM
These examples show how to set model parameters for the mymodel system.

This command sets the simulation start and stop times.

set_param('mymodel','StartTime','5','StopTime','100')

This command sets the solver to ode15s and changes the maximum order.

set_param('mymodel','Solver','ode15s','MaxOrder','3')

This command associates a SaveFcn callback.

set_param('mymodel','SaveFcn','my_save_cb')

Common Block Parameters

slref.book Page 7 M onday, September 27, 2004 3:20 PM
Common Block Parameters
This table lists the parameters common to all Simulink blocks, including block
callback parameters (see “Using Callback Routines”). Examples of commands
that change these parameters follow this table.

Table 8-2: Common Block Parameters

Parameter Description Values

AttributesFormat
String

Specifies parameters to be
displayed below block in a
block diagram

string

BackgroundColor Block icon background black | {white} | red | green | blue |
cyan | magenta | yellow | gray |
lightBlue | orange | darkGreen

BlockDescription Block description text

BlockType Block type text

CloseFcn Close callback MATLAB expression

CompiledPortWidths Structure of port widths scalar and vector

CopyFcn Copy callback MATLAB expression

DeleteFcn Delete callback MATLAB expression

Description User-specifiable description text

DialogParameters Names/attributes of
parameters in blocks
parameter dialog

structure

DropShadow Display drop shadow {off} | on

FontAngle Font angle (system-dependent) {normal} | italic |
oblique

FontName Font {Helvetica}
8-7

8 Model and Block Parameters

8-8

slref.book Page 8 M onday, September 27, 2004 3:20 PM
FontSize Font size

A value of -1 specifies that this
block inherits the font size
specified by the
DefaultBlockFontSize
model parameter.

{-1}

FontWeight Font weight (system-dependent) light | {normal} | demi
| bold

ForegroundColor Block name, icon, outline,
output signals, and signal
label

{black} | white | red | green | blue |
cyan | magenta | yellow | gray |
lightBlue | orange | darkGreen

InitFcn Initialization callback MATLAB expression

InputPorts Array of input port locations [h1,v1; h2,v2; ...]

LinkStatus Link status of block none |resolved | unresolved | implicit

LoadFcn Load callback MATLAB expression

ModelCloseFcn Model close callback MATLAB expression

Name Block’s name string

NameChangeFcn Block name change callback MATLAB expression

NamePlacement Position of block name {normal} | alternate

ObjectParameters Names/attributes of block’s
parameters

structure

OpenFcn Open callback MATLAB expression

Orientation Where block faces {right} | left | down | up

OutputPorts Array of output port locations [h1,v1; h2,v2; ...]

Parent Name of the system that owns
the block

string

ParentCloseFcn Parent subsystem close
callback

MATLAB expression

Table 8-2: Common Block Parameters (Continued)

Parameter Description Values

Common Block Parameters

slref.book Page 9 M onday, September 27, 2004 3:20 PM
These examples illustrate how to change these parameters.

This command changes the orientation of the Gain block in the mymodel system
so it faces the opposite direction (right to left).

set_param('mymodel/Gain','Orientation','left')

This command associates an OpenFcn callback with the Gain block in the
mymodel system.

set_param('mymodel/Gain','OpenFcn','my_open_cb')

This command sets the Position parameter of the Gain block in the mymodel
system. The block is 75 pixels wide by 25 pixels high. The position vector is not
enclosed in quotation marks.

set_param('mymodel/Gain','Position',[50 250 125 275])

Position Position of block in model
window

vector [left top right bottom]
not enclosed in quotation marks

PostSaveFcn Postsave callback MATLAB expression

PreSaveFcn Presave callback MATLAB expression

Selected Block selected state on | {off}

ShowName Display block name {on} | off

StartFcn Start simulation callback MATLAB expression

StopFcn Termination of simulation
callback

MATLAB expression

Tag User-defined string ' '

Type Simulink object type
(read-only)

'block'

UndoDeleteFcn Undo block delete callback MATLAB expression

UserData Any MATLAB data type []

UserDataPersistent Save UserData in the model
file.

on | {off}

Table 8-2: Common Block Parameters (Continued)

Parameter Description Values
8-9

8 Model and Block Parameters

8-1

slref.book Page 10 M onday, Septem ber 27, 2004 3:20 PM
Block-Specific Parameters
These tables list block-specific parameters for all Simulink blocks. The type of
the block appears in parentheses after the block name. Some Simulink blocks
are implemented as masked subsystems. The tables indicate masked blocks by
adding the designation “masked” after the block type.

Note The type listed for nonmasked blocks is the value of the block’s
BlockType parameter; the type listed for masked blocks is the value of the
block’s MaskType parameter. For more information, see “Mask Parameters” on
page 8-26.

The Dialog Box Prompt column indicates the text of the prompt for the
parameter on the block’s dialog box. The Values column shows the type of
value required (scalar, vector, variable), the possible values (separated with a
vertical line), and the default value (enclosed in braces).

Table 8-3: Continuous Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Derivative (Derivative) (no block-specific parameters)

Integrator (Integrator)

ExternalReset External reset {none} | rising | falling | either

InitialConditionSource Initial condition source {internal} | external

InitialCondition Initial condition scalar or vector {0}

LimitOutput Limit output {off} | on

UpperSaturationLimit Upper saturation limit scalar or vector {inf}

LowerSaturationLimit Lower saturation limit scalar or vector { inf}

ShowSaturationPort Show saturation port {off} | on

ShowStatePort Show state port {off} | on
0

Block-Specific Parameters

slref.book Page 11 M onday, Septem ber 27, 2004 3:20 PM
AbsoluteTolerance Absolute tolerance scalar {auto}

State-Space (StateSpace)

A A matrix {1}

B B matrix {1}

C C matrix {1}

D D matrix {1}

X0 Initial conditions vector {0}

Transfer Fcn (TransferFcn)

Numerator Numerator vector or matrix {[1]}

Denominator Denominator vector {[1 1]}

Transport Delay (TransportDelay)

DelayTime Time delay scalar or vector {1}

InitialInput Initial input scalar or vector {0}

BufferSize Initial buffer size scalar {1024}

Variable Transport Delay (VariableTransportDelay)

MaximumDelay Maximum delay scalar or vector {10}

InitialInput Initial input scalar or vector {0}

MaximumPoints Buffer size scalar {1024}

Zero-Pole (ZeroPole)

Zeros Zeros vector {[1]}

Poles Poles vector {[0 1]}

Gain Gain vector {[1]}

Table 8-3: Continuous Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values
8-11

8 Model and Block Parameters

8-1

slref.book Page 12 M onday, Septem ber 27, 2004 3:20 PM
Table 8-4: Discontinuities Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Backlash (Backlash)

BacklashWidth Deadband width scalar or vector {1}

InitialOutput Initial output scalar or vector {0}

Coulomb & Viscous Friction (Coulombic and Viscous Friction) (masked)

Dead Zone (DeadZone)

LowerValue Start of dead zone scalar or vector { 0.5}

UpperValue End of dead zone scalar or vector {0.5}

Hit Crossing (HitCross)

HitCrossingOffset Hit crossing offset scalar or vector {0}

HitCrossingDirection Hit crossing direction rising | falling | {either}

ShowOutputPort Show output port {on} | off

Quantizer (Quantizer)

QuantizationInterval Quantization interval scalar or vector {0.5}

Rate Limiter (RateLimiter)

RisingSlewLimit Rising slew rate scalar or vector {1.}

FallingSlewLimit Falling slew rate scalar or vector { 1.}

Relay (Relay)

OnSwitchValue Switch on point scalar or vector {eps}

OffSwitchValue Switch off point scalar or vector {eps}

OnOutputValue Output when on scalar or vector {1}

OffOutputValue Output when off scalar or vector {0}

Saturation (Saturate)
2

Block-Specific Parameters

slref.book Page 13 M onday, Septem ber 27, 2004 3:20 PM
UpperLimit Upper limit scalar or vector {0.5}

LowerLimit Lower limit scalar or vector { 0.5}

Table 8-4: Discontinuities Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Table 8-5: Discrete Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Discrete Filter (DiscreteFilter)

Numerator Numerator vector {[1]}

Denominator Denominator vector {[1 2]}

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Discrete State-Space (DiscreteStateSpace)

A A matrix {1}

B B matrix {1}

C C matrix {1}

D D matrix {1}

X0 Initial conditions vector {0}

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Discrete-Time Integrator (DiscreteIntegrator)

IntegratorMethod Integrator method {ForwardEuler} | BackwardEuler |
Trapezoidal

ExternalReset External reset {none} | rising | falling | either

InitialConditionSource Initial condition source {internal} | external

InitialCondition Initial condition scalar or vector {0}
8-13

8 Model and Block Parameters

8-1

slref.book Page 14 M onday, Septem ber 27, 2004 3:20 PM
LimitOutput Limit output {off} | on

UpperSaturationLimit Upper saturation limit scalar or vector {inf}

LowerSaturationLimit Lower saturation limit scalar or vector { inf}

ShowSaturationPort Show saturation port {off} | on

ShowStatePort Show state port {off} | on

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Discrete Transfer Fcn (DiscreteTransferFcn)

Numerator Numerator vector {[1]}

Denominator Denominator vector {[1 0.5]}

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Discrete Zero-Pole (DiscreteZeroPole)

Zeros Zeros vector {[1]}

Poles Poles vector [0 0.5]

Gain Gain scalar {1}

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

First-Order Hold (First Order Hold) (masked)

Memory (Memory)

X0 Initial condition scalar or vector {0}

InheritSampleTime Inherit sample time {off} | on

Unit Delay (UnitDelay)

X0 Initial condition scalar or vector {0}

Table 8-5: Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values
4

Block-Specific Parameters

slref.book Page 15 M onday, Septem ber 27, 2004 3:20 PM
SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Zero-Order Hold (ZeroOrderHold)

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

Table 8-5: Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Table 8-6: Look-Up Tables Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Look-Up Table (Lookup)

InputValues Vector of input values vector {[5:5]}

OutputValues Vector of output values vector {tanh([5:5])}

Look-Up Table (2-D) (Lookup Table (2-D)) (masked)

RowIndex Row vector

ColumnIndex Column vector

OutputValues Table 2-D matrix

Table 8-7: Math Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Abs (Abs) (no block-specific parameters)

Algebraic Constraint (Algebraic Constraint) (masked)

Combinatorial Logic (CombinatorialLogic)

TruthTable Truth table matrix {[0 0;0 1;0 1;1 0;
0 1;1 0;1 0;1 1]}
8-15

8 Model and Block Parameters

8-1

slref.book Page 16 M onday, Septem ber 27, 2004 3:20 PM
Complex to Magnitude-Angle

Complex to Real-Imag

Dot Product (Dot Product) (masked)

Gain (Gain)

Gain Gain scalar or vector {1}

Logical Operator (Logic)

Operator Operator {AND} | OR | NAND | NOR | XOR | NOT

Inputs Number of input ports scalar {2}

Magnitude-Angle to Complex

Math Function (Math)

Operator Function {exp} | log | log10 | square | sqrt
| pow | reciprocal | hypot | rem |
mod

Matrix Gain (Matrix Gain) (masked)

MinMax (MinMax)

Function Function {min} | max

Inputs Number of input ports scalar {1}

Product (Product)

Inputs Number of inputs scalar {2}

Relational Operator (RelationalOperator)

Operator Operator == | != | < | {<=} | >= | >

Relational Operator (RelationalOperator)

Operator Operator == | != | < | {<=} | >= | >

Rounding Function (Rounding)

Operator Function {floor} | ceil | round | fix

Table 8-7: Math Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values
6

Block-Specific Parameters

slref.book Page 17 M onday, Septem ber 27, 2004 3:20 PM
Sign (Signum) (no block-specific parameters)

Slider Gain (SliderGain) (masked)

Sum (Sum)

Inputs List of signs scalar or list of signs {++}

Trigonometric Function (Trigonometry)

Operator Function {sin} | cos | tan | asin | acos |
atan | atan2 | sinh | cosh | tanh

Table 8-7: Math Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Table 8-8: Model-Wide Utilities

Block (Type)/Parameter Dialog Box Prompt Values

Model Info (CMBlock) (mask)

Table 8-9: Ports & Subsystems

Block (Type)/Parameter Dialog Box Prompt Values

Configurable Subsystem (mask)

Choice Block choice string

LibraryName Library name string

Enable (EnablePort)

StatesWhenEnabling States when enabling {held} | reset

ShowOutputPort Show output port {off} | on

In (Inport)

Port Port number scalar {1}

PortWidth Port width scalar { 1}
8-17

8 Model and Block Parameters

8-1

slref.book Page 18 M onday, Septem ber 27, 2004 3:20 PM
SampleTime Sample time scalar (sample period) { 1}
or vector [period offset]

Out (Outport)

Port Port number scalar {1}

OutputWhenDisabled Output when disabled {held} | reset

InitialOutput Initial output scalar or vector {0}

Subsystem (SubSystem)

ShowPortLabels Show/Hide Port Labels
Format menu item

{on} | off

Terminator (Terminator) (no block-specific parameters)

Trigger (TriggerPort)

TriggerType Trigger type {rising} | falling | either |
function-call

ShowOutputPort Show output port {off} | on

Table 8-9: Ports & Subsystems (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Table 8-10: Signal Attributes

Block (Type)/Parameter Dialog Box Prompt Values

Data Type Conversion

IC (InitialCondition)

Value Initial value scalar or vector {1}

Width (Width) (no block-specific parameters)
8

Block-Specific Parameters

slref.book Page 19 M onday, Septem ber 27, 2004 3:20 PM
Table 8-11: Signal Routing

Block (Type)/Parameter Dialog Box Prompt Values

Bus Selector (BusSelector)

InputSignals Cell array of the input signals nested to
reflect the signal hierarchy

Data Store Memory (DataStoreMemory)

DataStoreName Data store name tag {A}

InitialValue Initial value vector {0}

Data Store Read (DataStoreRead)

DataStoreName Data store name tag {A}

SampleTime Sample time scalar (sample period) { 1}
or vector [period offset]

Data Store Write (DataStoreWrite)

DataStoreName Data store name tag {A}

SampleTime Sample time scalar (sample period) { 1}
or vector [period offset]

Demux (Demux)

Outputs Number of outputs scalar or vector {3}

From (From)

GotoTag Goto tag tag {A}

Goto (Goto)

GotoTag Tag tag {A}

TagVisibility Tag visibility {local} | scoped | global

Goto Tag Visibility (GotoTagVisibility)

GotoTag Goto tag tag {A}
8-19

8 Model and Block Parameters

8-2

slref.book Page 20 M onday, Septem ber 27, 2004 3:20 PM
Manual Switch (Manual Switch) (masked)

Merge

Multiport Switch (MultiPortSwitch)

Inputs Number of inputs scalar or vector {3}

Mux (Mux)

Inputs Number of inputs scalar or vector {3}

Switch (Switch)

Threshold Threshold scalar or vector {0}

Table 8-11: Signal Routing (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Table 8-12: Sinks Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Display (Display)

Format Format {short} | long | short_e | long_e
| bank

Decimation Decimation scalar {1}

Floating Floating display {off} on

SampleTime Sample time scalar (sample period) { 1}
or vector [period offset]

Out (Outport)

Port Port number scalar {1}

OutputWhenDisabled Output when disabled {held} | reset

InitialOutput Initial output scalar or vector {0}

Scope (Scope)
0

Block-Specific Parameters

slref.book Page 21 M onday, Septem ber 27, 2004 3:20 PM
Location Position of Scope window
on screen

vector {[left top right bottom]}

Open (If Scope is open when the
model is opened; cannot
be set from dialog box)

{off} | on

NumInputPorts Number of axes positive integer > 0

TickLabels Hide tick labels {on} | off

ZoomMode (Zoom button initially
pressed)

{on} | xonly | yonly

AxesTitles Title (on right-click axes) scalar {auto}

Grid (For future use) {on} | off

TimeRange Time range scalar {auto}

YMin Y min scalar { 5}

YMax Y max scalar {5}

SaveToWorkspace Save data to workspace {off} | on

SaveName Variable name variable {ScopeData}

DataFormat Format {matrix | structure}

LimitMaxRows Limit rows to last {on} | off

MaxRows (no label) scalar {5000}

Decimation (Value if Decimation is
selected)

scalar {1}

SampleInput (Toggles with Decimation) {off} | on

SampleTime (SampleInput value) scalar (sample period) {0}
or vector [period offset]

Stop Simulation (StopSimulation) (no block-specific parameters)

Terminator (Terminator) (no block-specific parameters)

Table 8-12: Sinks Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values
8-21

8 Model and Block Parameters

8-2

slref.book Page 22 M onday, Septem ber 27, 2004 3:20 PM
To File (ToFile)

Filename Filename filename {untitled.mat}

MatrixName Variable name variable {ans}

Decimation Decimation scalar {1}

SampleTime Sample time scalar (sample period) { 1}
or vector [period offset]

To Workspace (ToWorkspace)

VariableName Variable name variable {simout}

Buffer Maximum number of
rows

scalar {inf}

Decimation Decimation scalar {1}

SampleTime Sample time scalar (sample period) { 1}
or vector [period offset]

XY Graph (XY scope.) (masked)

Table 8-12: Sinks Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Table 8-13: Sources Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Band-Limited White Noise (Continuous White Noise) (masked)

Chirp Signal (chirp) (masked)

VectorParams1D Interpret vector
parameters as 1-D

off {on}

Clock (Clock) (no block-specific parameters)

Constant (Constant)

Value Constant value scalar or vector {1}
2

Block-Specific Parameters

slref.book Page 23 M onday, Septem ber 27, 2004 3:20 PM
VectorParams1D Interpret vector
parameters as 1-D

off {on}

Digital Clock (DigitalClock)

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

From File (FromFile)

FileName Filename filename {untitled.mat}

From Workspace (FromWorkspace)

VariableName Matrix table matrix {[T,U]}

Ground (Ground) (no block-specific parameters)

In (Inport)

Port Port number scalar {1}

PortWidth Port width scalar { 1}

SampleTime Sample time scalar (sample period) { 1}
or vector [period offset]

Pulse Generator (Pulse Generator)

Amplitude Amplitude scalar {1}, vector, or matrix

PhaseDelay Phase delay scalar {0}, vector, or matrix

PulseType Pulse type {'Time based'} | 'Sample based'

PulseWidth Pulse width scalar {50}, vector, or matrix

SampleTime Sample time scalar (sample period) {1}
or vector [period offset]

VectorParams1D Interpret vector
parameters as 1-D

off {on}

Ramp (Ramp) (masked)

Table 8-13: Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values
8-23

8 Model and Block Parameters

8-2

slref.book Page 24 M onday, Septem ber 27, 2004 3:20 PM
VectorParams1D Interpret vector
parameters as 1-D

off {on}

Random Number (RandomNumber)

Seed Initial seed scalar or vector {0}

VectorParams1D Interpret vector
parameters as 1-D

off {on}

Repeating Sequence (Repeating table) (masked)

Signal Generator (SignalGenerator)

WaveForm Wave form {sine} | square | sawtooth |
random

Amplitude Amplitude scalar or vector {1}

Frequency Frequency scalar or vector {1}

Units Units {Hertz} | rad/sec

VectorParams1D Interpret vector
parameters as 1-D

off {on}

Sine Wave (Sin)

Amplitude Amplitude scalar or vector {1}

Frequency Frequency scalar or vector {1}

Phase Phase scalar or vector {0}

SampleTime Sample time scalar (sample period) { 1}
or vector [period offset]

VectorParams1D Interpret vector
parameters as 1-D

off {on}

Step (Step)

Time Step time scalar or vector {1}

Before Initial value scalar or vector {0}

Table 8-13: Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values
4

Block-Specific Parameters

slref.book Page 25 M onday, Septem ber 27, 2004 3:20 PM
After Final value scalar or vector {1}

VectorParams1D Interpret vector
parameters as 1-D

off {on}

Uniform Random Number (Uniform RandomNumber)

Minimum Minimum scalar or vector { 1}

Maximum Maximum scalar or vector {1}

Seed Initial Seed scalar or vector {0}

SampleTime Sample Time scalar or vector {0}

VectorParams1D Interpret vector
parameters as 1-D

off {on}

Table 8-13: Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Table 8-14: User-Defined Functions Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Fcn (Fcn)

Expr Expression expression
{sin(u(1)*exp(2.3*(u(2))))}

MATLAB Fcn (MATLABFcn)

MATLABFcn MATLAB function MATLAB function {sin}

OutputWidth Output width scalar or vector { 1}

S-Function (S-Function)

FunctionName S-function name name {system}

Parameters S-function parameters Additional parameters if needed
8-25

8 Model and Block Parameters

8-2

slref.book Page 26 M onday, Septem ber 27, 2004 3:20 PM
Mask Parameters
This section lists parameters that describe masked blocks. This table lists
masking parameters, which correspond to Mask Editor dialog box parameters.

Table 8-15: Mask Parameters

Parameter Description/Prompt Values

Mask Turns mask on or off. {on} | off

MaskCallbackString Mask parameter callbacks delimited string

MaskCallbacks Mask parameter callbacks cell array

MaskDescription Block description string

MaskDisplay Drawing commands display commands

MaskEditorHandle Mask editor figure handle (for
internal use)

handle

MaskEnableString Mask parameter enable status delimited string

MaskEnables Mask parameter enable status cell array of strings, each either 'on' or
'off'

MaskHelp Block help string

MaskIconFrame Icon frame (Visible is on, Invisible is
off)

{on} | off

MaskIconOpaque Icon transparency (Opaque is on,
Transparent is off)

{on} | off

MaskIconRotate Icon rotation (Rotates is on, Fixed is
off)

on | {off}

MaskIconUnits Drawing coordinates Pixel | {Autoscale} | Normalized

MaskInitialization Initialization commands MATLAB command

MaskNames

MaskPrompts Prompt (see below) cell array of strings

MaskPromptString Prompt (see below) delimited string
6

Mask Parameters

slref.book Page 27 M onday, Septem ber 27, 2004 3:20 PM
When you use the Mask Editor to create a dialog box parameter for a masked
block, you provide this information:

• The prompt, which you enter in the Prompt field

• The variable that holds the parameter value, which you enter in the
Variable field

• The type of field created, which you specify by selecting a Control type

• Whether the value entered in the field is to be evaluated or stored as a literal,
which you specify by selecting an Assignment type

The mask parameters, listed in the table on the previous page, store the values
specified for the dialog box parameters in these ways:

• The Prompt field values for all dialog box parameters are stored in the
MaskPromptString parameter as a string, with individual values separated
by a vertical bar (|), as shown in this example.

MaskPropertyNameSt
ring

MaskSelfModifiable Indicates that the block can modify
itself.

on | {off}

MaskStyles Control type (see below) cell array {Edit} | Checkbox | Popup

MaskStyleString Control type (see below) {Edit} | Checkbox | Popup

MaskTunableValues Tunable parameter attributes cell array of strings

MaskTunableValue
String

Tunable parameter attributes delimited string

MaskType Mask type string

MaskValues Block parameter values (see below) cell array of strings

MaskValueString Block parameter values (see below) delimited string

MaskVariables Variable (see below) string

MaskVisibilities Specifies visibility of parameters

Table 8-15: Mask Parameters (Continued)

Parameter Description/Prompt Values
8-27

8 Model and Block Parameters

8-2

slref.book Page 28 M onday, Septem ber 27, 2004 3:20 PM
"Slope:|Intercept:"

• The Variable field values for all dialog box parameters are stored in the
MaskVariables parameter as a string, with individual assignments
separated by a semicolon. A sequence number indicates the prompt that is
associated with a variable. A special character preceding the sequence
number indicates the Assignment type: @ indicates Evaluate, & indicates
Literal.

For example, "a=@ 1;b=&2;" indicates that the value entered in the first
parameter field is assigned to variable a and is evaluated in MATLAB before
assignment, and the value entered in the second field is assigned to variable
b and is stored as a literal, which means that its value is the string entered
in the dialog box.

• The Control type field values for all dialog box parameters are stored in the
MaskStyleString parameter as a string, with individual values separated by
a comma. The Popup strings values appear after the popup type, as shown
in this example:
"edit,checkbox,popup(red|blue|green)"

• The parameter values are stored in the MaskValueString mask parameter
as a string, with individual values separated by a vertical bar. The order of
the values is the same as the order in which the parameters appear on the
dialog box. For example, these statements define values for the parameter
field prompts and the values for those parameters:
MaskPromptString "Slope:|Intercept:"
MaskValueString "2|5"
8

slref.book Page 1 M onday, September 27, 2004 3:20 PM
9

Model File Format

This section describes the format of a Simulink model file.

9 Model File Format

9-2

slref.book Page 2 M onday, September 27, 2004 3:20 PM
Model File Contents
A model file is a structured ASCII file that contains keywords and
parameter-value pairs that describe the model. The file describes model
components in hierarchical order.

The structure of the model file is as follows.

Model {
<Model Parameter Name> <Model Parameter Value>
...
BlockDefaults {
<Block Parameter Name> <Block Parameter Value>
...

}
AnnotationDefaults {
<Annotation Parameter Name> <Annotation Parameter Value>
...

}
System {
<System Parameter Name> <System Parameter Value>
...
Block {
<Block Parameter Name> <Block Parameter Value>
...

}
Line {
<Line Parameter Name> <Line Parameter Value>
...
Branch {

<Branch Parameter Name> <Branch Parameter Value>
...

}
}
Annotation {
<Annotation Parameter Name> <Annotation Parameter Value>
...

}
}

}

Model File Contents

slref.book Page 3 M onday, September 27, 2004 3:20 PM
The model file consists of sections that describe different model components:

• The Model section defines model parameters.

• The BlockDefaults section contains default settings for blocks in the model.

• The AnnotationDefaults section contains default settings for annotations in
the model.

• The System section contains parameters that describe each system
(including the top-level system and each subsystem) in the model. Each
System section contains block, line, and annotation descriptions.

See Chapter 8, “Model and Block Parameters” for descriptions of model and
block parameters.

Model Section
The Model section, located at the top of the model file, defines the values for
model-level parameters. These parameters include the model name, the
version of Simulink last used to modify the model, and simulation parameters.

BlockDefaults Section
The BlockDefaults section appears after the simulation parameters and
defines the default values for block parameters within this model. These values
can be overridden by individual block parameters, defined in the Block
sections.

AnnotationDefaults Section
The AnnotationDefaults section appears after the BlockDefaults section.
This section defines the default parameters for all annotations in the model.
These parameter values cannot be modified using the set_param command.

System Section
The top-level system and each subsystem in the model are described in a
separate System section. Each System section defines system-level parameters
and includes Block, Line, and Annotation sections for each block, line, and
annotation in the system. Each Line that contains a branch point includes a
Branch section that defines the branch line.
9-3

9 Model File Format

9-4

slref.book Page 4 M onday, September 27, 2004 3:20 PM

Index

slref.book Page 1 M onday, September 27, 2004 3:20 PM
A
Abs block 2-3
absolute tolerance

simset parameter 5-12
specifying for a block state 2-193

absolute value
generating 2-3, 2-131

Action Port block 2-5
Action subsystems

creating 2-5
with If block 2-175
with SwitchCase block 2-354

add_block command 4-6
add_line command 4-7
add_param command 4-9
addterms command 4-10
Algebraic Constraint block 2-8
algebraic equations

modeling 2-8
algebraic loops

integrator block reset or IC port 2-119
analysis functions

perturbing model 2-182
AND operator 2-24
AnnotationDefaults section of mdl file 9-3
annotations

annotation block
See Model Info block

ashow debug command 7-4, 7-5
Assert block 2-10
Assignment block 2-12
Atomic Subsystem block 2-343
atrace debug command 7-6
automatic scaling

and Look-Up Table (2D) block 2-212
autoscaling Scope axes 2-304
B
Backlash block 2-17
Backward Euler method 2-117
Backward Rectangular method 2-117
Band-Limited White Noise block 2-21
bdclose command 4-11
bdroot command 4-12
Bitwise Logical Operator block 2-24
block dialog boxes

closing 4-13
opening 4-30

block libraries
Blocksets and Toolboxes 1-19
Demos 1-20
Extras 1-19

block names
newline character in 4-4, 5-3, 6-3
slash character in 4-5, 5-4, 6-4

block parameters
changing during simulation 4-34
common 8-7
Continuous library 8-10
Discontinuities library 8-12
Discrete library 8-13
Look-Up Tables library 8-15, 8-25
Math library 8-15
Model-Wide Utilities library 8-17
Ports & Subsystems library 8-17
Signal Attributes library 8-18
Signal Routing library 8-19
Sinks library 8-20
Sources library 8-22

BlockDefaults section of mdl file 9-3
blocks

adding to model 4-6
current 4-24
I-1

Index

I-2

slref.book Page 2 M onday, September 27, 2004 3:20 PM
deleting
delete_block command 4-16

handle of current 4-25
specifying path 4-4, 5-3, 6-3

blocks
See also block parameters 8-10

Blocksets and Toolboxes library 1-19
bode function 3-4
Boolean expressions

modeling 2-69
break debug command 7-9
bshow debug command 7-11
Bus Creator block 2-28
Bus Selector block 2-32

C
capping unconnected blocks 2-359, 2-377
Check Discrete Gradient block 2-35
Check Dynamic Gap block 2-38
Check Dynamic Lower Bound block 2-41
Check Dynamic Range block 2-44
Check Dynamic Upper Bound block 2-47
Check Input Resolution block 2-50
Check Static Gap block 2-53
Check Static Lower Bound block 2-56
Check Static Range block 2-59
Check Static Upper Bound block 2-62
Chirp Signal block 2-65
clear debug command 7-12
Clock block 2-67
close_system command 4-13
clutch demo 2-171
Combinatorial Logic block 2-69
combining input lines into vector line 2-247
compare_model command 4-15
Complex to Magnitude-Angle block 2-73
Complex to Real-Imag block 2-74
concatenating matrices 2-230
Configurable Subsystem block 2-75
Constant block 2-79
constant value

generating 2-79
continue debug command 7-13
Continuous block library

block parameters 8-10
control flow diagrams

Action subsystem 2-5
do-while

While Iterator block 2-389
for

For Iterator block 2-143
if-else

If block 2-175
switch

Switch Case block 2-354
while

While Iterator block 2-389
Coulomb and Viscous Friction block 2-83
Coulomb friction 2-83
Create Subsystem menu item 2-343
current block

getting pathname 4-24
handle 4-25

current system
getting pathname 4-26

D
Data Store Memory block 2-85
Data Store Read block 2-88
Data Store Write block 2-90
Data Type Conversion block 2-93
Dead Zone block 2-95

Index

slref.book Page 3 M onday, September 27, 2004 3:20 PM
deadband 2-17
debug commands

ashow 7-4, 7-5
atrace 7-6
break 7-9
bshow 7-11
clear 7-12
continue 7-13
disp 7-14
emode 7-18, 7-19
help 7-20
ishow 7-33
minor 7-21
nanbreak 7-22
next 7-23
probe 7-24
quit 7-25
run 7-26
states 7-29
status 7-30
step 7-31
stop 7-32
systems 7-34
tbreak 7-35
trace 7-36
undisp 7-37
untrace 7-38
xbreak 7-41
zcbreak 7-42
zclist 7-43

decimation factor 5-12
decision tables

modeling 2-69
delaying input by variable amount 2-386
delete_block command 4-16
delete_line command 4-17
delete_param command 4-18

demos
clutch 2-171
fohdemo 2-141
hardstop 2-171
lorenzs 2-395

Demos library 1-20
Demux block 2-97
Derivative block 2-103

accuracy of 2-103
derivatives

calculating 2-103
limiting 2-277

differential/algebraic systems
modeling 2-8

Digital Clock block 2-105
Discontinuities block library

block parameters 8-12
Discrete block library

block parameters 8-13
Discrete Filter block 2-112
Discrete State-Space block 2-114
discrete state-space model 3-4
Discrete Transfer Fcn block 2-124
Discrete Zero-Pole block 2-126
Discrete-Time Integrator block 2-116
discrete-time systems

linearization 3-3
disp command 6-5
disp debug command 7-14
Display block 2-128

as floating display 2-128
displaying

signals graphically 2-301
dlinmod function 3-2, 3-3
DocBlock block 2-131
Dot Product block 2-132
dpoly command 6-6
I-3

Index

I-4

slref.book Page 4 M onday, September 27, 2004 3:20 PM
E
eigenvalues of linearized matrix 3-4
emode debug command 7-18, 7-19
Enable block 2-134
Enabled and Triggered Subsystem block 2-136
Enabled Subsystem block 2-137
enabled subsystems

Enable block 2-134
expressions

applying to block inputs 2-138
MATLAB Fcn block 2-228

external inputs
flag 5-6
from workspace 2-182
ut 5-8

Extras block library 1-19

F
Fcn block 2-138

compared to Math Function block 2-226
compared to Rounding Function block 2-297
compared to Trigonometric Function block

2-380
files

reading from 2-150
writing to

To File block 2-362
find_system command 4-19
finding objects 4-19
Finite Impulse Response filter 2-112
finite-state machines

implementing 2-69
First-Order Hold block 2-141

compared to Zero-Order Hold block 2-141
fixed step size 5-13
flip-flops
implementing 2-69
floating scope

definition 2-308
Floating Scope block 2-301
fohdemo demo 2-141
for control flow diagram

creating 2-143
For Iterator block 2-143
For Iterator Subsystem block 2-147
For subsystems

creating 2-143
Forward Euler method 2-116
Forward Rectangular method 2-116
fprintf command 6-8
From block 2-148
From File block 2-150
From Workspace block 2-153
Function-Call Generator block 2-157
Function-Call Subsystem block 2-159

G
gain

varying during simulation 2-335
gcb command 4-24
gcbh command 4-25
gcs command 4-26
get_param command 4-27
global Goto tag visibility 2-166
Goto block 2-166
Goto Tag Visibility block 2-169
graphics

displaying on mask icon 6-11
Greek letters

displaying on mask icons 6-5, 6-13
Ground block 2-170

Index

slref.book Page 5 M onday, September 27, 2004 3:20 PM
H
handle of current block 4-25
hardstop demo 2-171
help debug command 7-20
Hide Name menu item

suppressing display of port label 2-251
Hit Crossing block 2-171
hybrid systems

linearization 3-3

I
IC block 2-173
If Action Subsystem block 2-180
If block 2-175
if-else control flow diagram

creating 2-175
image

displaying on mask icon 6-9, 6-10
image command 6-9
inf values

in mask plotting commands 6-11
Infinite Impulse Response filter 2-112
initial conditions

setting 2-173
initial states 5-13
initial step size 5-13
Inport block 2-181

linmod function 3-3
Inport blocks

in subsystem 2-343
input ports

unconnected 2-170
inputs

applying expressions to 2-138

applying MATLAB function to
Fcn block 2-138
MATLAB Fcn block 2-228

combining into vector line 2-247
delaying by variable amount 2-386
external 5-8
from outside system 2-181
from previous time step 2-232
from workspace 2-182
generating step between two levels 2-340
interpolated mapping 2-217
logical operations on 2-200
multiplying block inputs during simulation

2-335
outputting minimum or maximum 2-238
passing through stair-step function 2-271
piecewise linear mapping of two 2-211
plotting 2-395
reading from file 2-150
width of 2-394

integration
block input 2-186
discrete-time 2-116

Integrator block 2-186
interpolated mapping 2-217
inverting signal bits 2-24
ishow debug command 7-33

J
Jacobians 3-3

L
left-hand approximation 2-116
limiting

signals 2-299
I-5

Index

I-6

slref.book Page 6 M onday, September 27, 2004 3:20 PM
limiting derivative of signal 2-277
limiting integral 2-188
linear models

extracting
linmod function 3-3

linearization
discrete-time systems 3-3
linmod function 3-3

linearized matrix
eigenvalues 3-4

lines
adding 4-7
deleting 4-17

linmod function 3-2
Transport Delay block 2-371

linmod2 function 3-2
local Goto tag visibility 2-166
logic circuits

modeling 2-69
Logical Operator block 2-200
Look-Up Table (2-D) block 2-211
Look-Up Table (n-D) block 2-217
Look-Up Tables block library

block parameters 8-15, 8-25
lorenzs demo 2-395

M
Magnitude-Angle to Complex block 2-223
Manual Switch block 2-225
mask icon

displaying graphics on 6-11
displaying image on 6-9, 6-10
displaying port label on 6-12
displaying symbols and Greek letters on 6-13
displaying text on 6-5, 6-8, 6-13
displaying transfer function on 6-6
mask icons
displaying symbols and Greek letters on 6-5
question marks in 6-11

mask parameters
undefined 6-7

masked blocks
parameters 8-26

masked subsystems
question marks in icon 6-11

masking signal bits 2-24
Math block library

block parameters 8-15
Math Function block 2-226
mathematical functions

performing
Math Function block 2-226
Rounding Function block 2-297
Trigonometric Function block 2-380

mathematical symbols
displaying on mask icons 6-5, 6-13

MATLAB Fcn block 2-228
MATLAB functions

applying to block input
Fcn block 2-138
MATLAB Fcn block 2-228

matrices
concatenation 2-230
writing to 2-364

Matrix Concatenation block 2-230
maximum number of output rows 5-13
maximum order of ode15s solver 5-13
maximum step size

simset command 5-13
mdl file 9-2
Memory block 2-232
memory region

Index

slref.book Page 7 M onday, September 27, 2004 3:20 PM
shared
Data Store Memory block 2-85
Data Store Read block 2-88
Data Store Write block 2-90

Merge block 2-234
MinMax block 2-238
minor debug command 7-21
model command 5-5
model files 9-2
Model Info block 2-240
model parameters

table 8-2
models

closing 4-11
comparing

compare_model command 4-15
creating

new_system command 4-29
getting name 4-12
parameters 8-2
replacing blocks 4-31
simulating 5-7

Model-Wide Utilities block library
block parameters 8-17

multiplying block inputs
during simulation 2-335

multirate systems
linearization 3-3

Mux block 2-247

N
Nan values

in mask plotting commands 6-11
nanbreak debug command 7-22
new_system command 4-29
newline in block name 4-4, 5-3, 6-3

next debug command 7-23
nonlinear systems

spectral analysis of 2-65
normally distributed random numbers 2-275
NOT operator 2-24

O
objects

finding 4-19
specifying path 4-4, 5-3, 6-3

obsolete blocks, replacing 4-42
ode113 solver

Memory block 2-232
ode15s solver

maximum order property 5-13
Memory block 2-232

open_system command 4-30
opening

block dialog boxes 4-30
Simulink Library Browser 4-36
system windows 4-30

operating point 3-2
options structure

getting values 5-16
setting values 5-12

OR operator 2-24
Outport block 2-250

linmod function 3-3
Outport blocks

in subsystem 2-343
output

maximum rows 5-13
outside system 2-250
refine factor 5-14
selected elements of input vector 2-315
I-7

Index

I-8

slref.book Page 8 M onday, September 27, 2004 3:20 PM
selected information about the signal on input
2-264

specifying points 5-14
switching between two inputs 2-225
values

displaying 2-128
variables 5-14
writing to file

To File block 2-362
writing to workspace

To Workspace block 2-364
zero within range 2-95

output ports
capping unconnected 2-359, 2-377

P
parameters

adding 4-9
block

list 8-7
deleting 4-18
getting values of 4-27
masked blocks 8-26
model 8-2
setting values of

set_param command 4-34
patch command 6-10
path

specifying 4-4, 5-3, 6-3
phase-shifted wave 2-323, 2-325
piecewise linear mapping

two inputs 2-211
piecewise linear signal

generating
Signal Builder block 2-323

plot command 6-11
plotting input signals
Scope block 2-301
XY Graph block 2-395

plotting simulation data 5-10
port label

displaying on mask icon 6-12
port labels

suppressing display 2-251
port_label command 6-12
Ports & Subsystems block library

block parameters 8-17
probe debug command 7-24
programmable logic arrays

modeling 2-69
properties of Scope block 2-308
Pulse Generator block 2-266

Q
Quantizer block 2-271
question marks in mask icon 6-11
quit debug command 7-25

R
random noise

generating 2-275
Random Number block 2-275

and Band-Limited White Noise block 2-21
compared to Band-Limited White Noise block

2-275
random numbers

generating normally distributed 2-21
normally distributed 2-275
uniformly distributed 2-382

Rate Limiter block 2-277
Rate Transition block 2-279

Index

slref.book Page 9 M onday, September 27, 2004 3:20 PM
reading data
from data store 2-88
from file 2-150
from workspace 2-153

Real-Imag to Complex block 2-282
refine factor

simset command 5-14
region of zero output 2-95
regular expressions 4-21
relative tolerance 5-14
Repeating Sequence block 2-292
repeating signals 2-292
replace obsolete blocks 4-42
replace_block command 4-31
replacing blocks in model 4-31
Reshape block 2-294
right-hand approximation 2-117
Rounding Function block 2-297
run debug command 7-26

S
sample-and-hold

applying to block input 2-232
sampling interval

generating simulation time 2-105
Saturation block 2-299
save_system command 4-33
sawtooth wave

generating 2-324
Scope axes

autoscaling 2-304
Scope block 2-301

properties 2-308
saving axes settings 2-307

scoped Goto tag visibility 2-166
Selector block 2-315

separating vector signal 2-97
sequence of signals 2-266
sequential circuits

implementing 2-71
set_param command 4-34
setting parameter values 4-34
S-Function block 2-319
S-Function Builder block 2-321
shared data store

Data Store Memory block 2-85
Data Store Read block 2-88
Data Store Write block 2-90

SHIFT_LEFT operator 2-24
SHIFT_RIGHT operator 2-24
shifting signal bits 2-24
Sign block 2-322
Signal Attributes block library

block parameters 8-18
Signal Generator block 2-324
Signal Inspection block 2-264
Signal Routing block library

block parameters 8-19
Signal Specification block 2-327
signals

displaying graphically 2-301
displaying vector 2-302
displaying X-Y plot of 2-395
generating pulses 2-266
limiting 2-299
limiting derivative of 2-277
passed from Goto block 2-148
passing to From block 2-166
plotting

Scope block 2-301
XY Graph block 2-395

repeating 2-292
sim command 5-7
I-9

Index

I-10

slref.book Page 10 M onday, Septem ber 27, 2004 3:20 PM
simget command 5-16
simplot command

plotting simulation data 5-10
simset command 5-12
simulating models 5-7
simulation

parameters
specifying using simset command 5-12

stopping
Stop Simulation block 2-342

simulation time
generating at sampling interval 2-105
outputting 2-67

simulink command 4-36
Simulink Library Browser

opening 4-36
sine wave

generating
Signal Generator block 2-324
Sine Wave block 2-330

generating with increasing frequency
Chirp Signal block 2-65

Sine Wave block 2-330
Sinks block library

block parameters 8-20
slash in block name 4-5, 5-4, 6-4
Slider Gain block 2-335
slupdate command 4-42
solvers

properties
specifying 5-12

specifying using simset command 5-14
Sources block library

block parameters 8-22
spectral analysis of nonlinear systems 2-65
square wave

generating 2-324
ss2tf function 3-5
ss2zp function 3-5
stair-step function

passing signal through 2-271
state derivatives

setting to zero 3-6
state space in discrete system 2-114
states

initial 5-13
outputting 5-14
resetting 2-188
saving at end of simulation 5-13
specifying absolute tolerance for 2-193

states debug command 7-29
State-Space block 2-337
status debug command 7-30
Step block 2-340
step debug command 7-31
stop debug command 7-32
Stop Simulation block 2-342
stopping simulation 2-342
Subsystem block 2-343
subsystems

and Inport blocks 2-181
enabled 2-134
specifying path 4-4, 5-3, 6-3

Sum block 2-347
Switch Case Action Subsystem block 2-358
switch control flow diagram

creating 2-354
switching output between inputs

Manual Switch block 2-225
switching output between two inputs 2-225
System section of mdl file 9-3
system windows

closing 4-13
systems

Index

slref.book Page 11 M onday, Septem ber 27, 2004 3:20 PM
current 4-26
saving 4-33
specifying path 4-4, 5-3, 6-3

systems debug command 7-34

T
tbreak debug command 7-35
Terminator block 2-359
terminators

adding 4-10
TeX formatting commands

using in mask icon text 6-5, 6-13
text command 6-13
tf2ss utility

converting Transfer Fcn to state-space form
2-368

time delay
simulating 2-371

Time-Based Linearization block 2-360
To File block 2-362
To Workspace block 2-364
trace debug command 7-36
tracing facilities 5-14
Transfer Fcn block 2-368
transfer function

displaying on mask icon 6-6
transfer function form

converting to 3-5
transfer functions

discrete 2-124
linear 2-368
poles and zeros 2-399

discrete 2-126
Transport Delay block 2-371
Trapezoidal method 2-117
Trigger block 2-374

Trigger-Based Linearization block 2-377
Triggered Subsystem block 2-379
triggered subsystems

Trigger block 2-374
Trigonometric Function block 2-380
trim function 3-6
truth tables

implementing 2-69

U
unconnected input ports 2-170
unconnected output ports

capping 2-359, 2-377
undisp debug command 7-37
Uniform Random Number block 2-382

compared to Band-Limited White Noise block
2-382

uniformly distributed random numbers 2-382
Unit Delay block

compared to Transport Delay block 2-371
untrace debug command 7-38
Update Diagram menu item

changing block parameters during simulation
4-34

V
variable time delay 2-386
Variable Transport Delay block 2-386
vdp model

Scope block 2-303
vector signals

displaying 2-302
generating from inputs 2-247
separating 2-97

viscous friction 2-83
I-11

Index

I-12

slref.book Page 12 M onday, Septem ber 27, 2004 3:20 PM
visibility of Goto tag 2-169

W
while control flow diagram

creating 2-389
While Iterator block 2-389
While Iterator Subsystem block 2-393
While subsystems

creating 2-389
white noise

generating 2-21
Width block 2-394
workspace

destination 5-13
reading data from 2-153
source 5-14
writing output to 2-364

writing data to data store 2-90
writing output to file 2-362
writing output to workspace 2-364

X
xbreak debug command 7-41
XOR operator 2-24
XY Graph block 2-395

Z
zcbreak debug command 7-42
zclist debug command 7-43
zero crossings

detecting
Hit Crossing block 2-171
simset command 5-15

zero output in region
generating 2-95
Zero-Order Hold block

compared to First-Order Hold block 2-141
Zero-Pole block 2-399
zero-pole form

converting to 3-5
zooming in on displayed data 2-305

	Block Libraries
	Continuous
	Discontinuities
	Discrete
	Look-Up Tables
	Math Operations
	Model Verification
	Acknowledgment

	Model-Wide Utilities
	Ports & Subsystems
	Signal Attributes
	Signal Routing
	Sinks
	Sources
	User-Defined Functions
	Blocksets and Toolboxes
	Demos Library

	Simulink Blocks
	Abs
	Action Port
	Algebraic Constraint
	Assertion
	Assignment
	Backlash
	Band-Limited White Noise
	Bitwise Logical Operator
	Bus Creator
	Bus Selector
	Check Discrete Gradient
	Check Dynamic Gap
	Check Dynamic Lower Bound
	Check Dynamic Range
	Check Dynamic Upper Bound
	Check Input Resolution
	Check Static Gap
	Check Static Lower Bound
	Check Static Range
	Check Static Upper Bound
	Chirp Signal
	Clock
	Combinatorial Logic
	Complex to Magnitude-Angle
	Complex to Real-Imag
	Configurable Subsystem
	Constant
	Coulomb and Viscous Friction
	Data Store Memory
	Data Store Read
	Data Store Write
	Data Type Conversion
	Dead Zone
	Demux
	Derivative
	Digital Clock
	Direct Look-Up Table (n-D)
	Discrete Filter
	Discrete State-Space
	Discrete-Time Integrator
	Discrete Transfer Fcn
	Discrete Zero-Pole
	Display
	DocBlock
	Dot Product
	Enable
	Enabled and Triggered Subsystem
	Enabled Subsystem
	Fcn
	First-Order Hold
	For Iterator
	For Iterator Subsystem
	From
	From File
	From Workspace
	Function-Call Generator
	Function-Call Subsystem
	Gain, Matrix Gain
	Goto
	Goto Tag Visibility
	Ground
	Hit Crossing
	IC
	If
	If Action Subsystem
	Inport
	Integrator
	Interpolation (n-D) Using PreLook-Up
	Logical Operator
	Look-Up Table
	Look-Up Table (2-D)
	Look-Up Table (n-D)
	Magnitude-Angle to Complex
	Manual Switch
	Math Function
	MATLAB Fcn
	Matrix Concatenation
	Memory
	Merge
	MinMax
	Model Info
	Editable text
	Model properties
	Configuration manager properties

	Multi-Port Switch
	Mux
	Outport
	Polynomial
	Prelook-Up Index Search
	Product
	Probe
	Pulse Generator
	Quantizer
	Ramp
	Random Number
	Rate Limiter
	Rate Transition
	Real-Imag to Complex
	Relational Operator
	Relay
	Repeating Sequence
	Reshape
	Rounding Function
	Saturation
	Scope, Floating Scope
	Selector
	S-Function
	S-Function Builder
	Sign
	Signal Builder
	Signal Generator
	Signal Specification
	Sine Wave
	Slider Gain
	State-Space
	Step
	Stop Simulation
	Subsystem, Atomic Subsystem
	Sum
	Switch
	Switch Case
	Switch Case Action Subsystem
	Terminator
	Time-Based Linearization
	To File
	To Workspace
	Transfer Fcn
	Transport Delay
	Trigger
	Trigger-Based Linearization
	Triggered Subsystem
	Trigonometric Function
	Uniform Random Number
	Unit Delay
	Variable Transport Delay
	While Iterator
	While Iterator Subsystem
	Width
	XY Graph
	Zero-Order Hold
	Zero-Pole

	Linearization and Trimming Commands
	linmod, dlinmod, linmod2
	trim

	Model Construction Commands
	add_block
	add_line
	add_param
	addterms
	bdclose
	bdroot
	close_system
	compare_model
	delete_block
	delete_line
	delete_param
	find_system
	gcb
	gcbh
	gcs
	get_param
	new_system
	open_system
	replace_block
	save_system
	set_param
	simulink
	sldiscmdl
	slmdldiscui
	slupdate

	Simulation Commands
	model
	sim
	simplot
	simset
	simget

	Mask Icon Drawing Commands
	disp
	dpoly
	fprintf
	image
	patch
	plot
	port_label
	text

	Simulink Debugger Commands
	animate
	ashow
	atrace
	bafter
	break
	bshow
	clear
	continue
	disp
	elist
	emode
	etrace
	help
	minor
	nanbreak
	next
	probe
	quit
	run
	slist
	states
	status
	step
	stop
	strace
	systems
	tbreak
	trace
	undisp
	untrace
	where
	xbreak
	zcbreak
	zclist

	Model and Block Parameters
	Model Parameters
	Common Block Parameters
	Block-Specific Parameters
	Mask Parameters

	Model File Format
	Model File Contents
	Model Section
	BlockDefaults Section
	AnnotationDefaults Section
	System Section

	Index

